

AFLEET TOOL 2019 UPDATES

ANDY BURNHAM
Principal Environmental Scientist
aburnham@anl.gov

Technology Integration Webinar February 26, 2020

OUTLINE OF PRESENTATION

AFLEET 2019 Updates

- EV Charging Calculator
- Off-Road Footprint Calculator
- Propane Low-NOx Emissions

AFLEET Demo #1

EV Charging Calculator

AFLEET Demo #2

Off-Road Fleet Footprint Calculator

AFLEET TOOL 2019 UPDATES

"AFLEET TOOL" TO ANALYZE AFV COSTS & BENEFITS

Examines light-duty & heavy-duty vehicle:

- Petroleum use
- GHGs
- Air pollutants
- Cost of ownership

Contains 18 fuel/vehicle technologies

- Conventional
- Hybrids
- Plug-in electrics
- Alternative fuels: CNG, LNG, LPG, H2, ethanol, biodiesel, renewable diesel

New features in AFLEET 2019 Spreadsheet

- Public EV Charging and Off-Road Footprint calculators
- Low-NOx LPG engines
- Maintenance cost updates
- AFLEET 2019 Spreadsheet available at: greet.es.anl.gov/afleet

AFLEET TOOL'S CALCULATION METHODS

1. Simple Payback Calculator

Annual emissions & simple payback: new AFV vs. conventional

2. Total Cost of Ownership Calculator

- Lifetime emissions & NPV of costs: new vehicle

3. Idle Reduction Calculator

Annual emissions & simple payback: <u>IR equipment vs. idling</u>

4. On-Road Fleet Footprint Calculator

Annual & remaining lifetime emissions of <u>existing & new vehicles</u>

5. Off-Road Fleet Footprint Calculator

Annual & remaining lifetime emissions of <u>existing & new off-road equipment</u>

6. EV Charging Calculator

Annual <u>emissions benefit</u> of utilizing public charging infrastructure

EV CHARGING CALCULATOR

VW SETTLEMENT = \$2+ BILLION FOR EV CHARGING

UTILITIES MAKING LARGE CHARGING INVESTMENTS

Public Utility Filings 2012 – June 2019

Approved

21

States

61

Filings

39

Utilities

\$1,152,227,741

Investment

1,996

DC Fast Charging Stations

45,112

Level 2 Charging Stations

Pending/Filed

21

States

31

Filings

25

Utilities

\$1,579,700,976

Investment

1,048

DC Fast Charging Stations

125,740

Level 2 Charging Stations

OVERVIEW OF PUBLIC CHARGING DEPLOYMENT

- 70 public chargers per 1000 PEVs (L2/DCFC) in 2017
 - L2: 15,000 (2017) -> ~26,000 (2019)
 - DCFC: 2,000 (2017) -> ~4,000 (2019)
- Areas w/ highest EV market penetration in 2017:
 - Less chargers than national average
 - 47 L2 /1000 PEVs
 - 4 DCFCs/1000 EVs
- Few studies have analyzed optimal ratio of chargers per PEV
 - NREL for 15 million PEVs in 2030
 - ~36 79 L2 /1000 PEVs
 - ~1.5 3 DCFC stations/1000 PEVs

EV CHARGING CALCULATOR INTRODUCTION

• What are emissions/energy benefits of EV public charging infrastructure?

Methodology:

- 1. Utilization, kW & charge time
 - L2 vs DC Fast
 - Parking lot, retail/leisure, education, healthcare, workplace, multi-unit dwelling
 - Single-unit dwelling included for comparison
- 2. Electricity dispensed by charger
- EV miles based on electricity dispensed & weighted EV efficiency
- 4. Emissions from EV miles
- 5. Emissions from gasoline miles being displaced
- 6. Benefit = gasoline emissions EV emissions

Relationship between increasing public charging & EV adoption

- Literature is inconclusive
- Increasing availability acts as incentive, but it is not enough to spur adoption

OFF-ROAD FOOTPRINT CALCULATOR

OFF-ROAD = LARGE SOURCE OF MOBILE AIR POLLUTION

OFF-ROAD FOOTPRINT CALCULATOR INTRODUCTION

Examines off-road equipment:

- Petroleum use
- GHGs
- Air pollutants

Contains 12 fuel/equipment technologies

- Conventional
- Electric
- Alternative fuels: CNG, LNG, LPG, H₂, ethanol, biodiesel, renewable diesel

Includes 22 equipment types (in 6 EPA NONROAD categories)

- Data based on EPA MOVES2014b
 - Emission factors: conventional and alt. fuel
 - Annual usage
 - Rated horsepower
 - Equipment lifetime

Feedback on equipment types & data appreciated

Spoken to coordinators about marine and rail

AFLEET OFF-ROAD EQUIPMENT CATEGORIES & TYPES

1. Agricultural

Agricultural tractors

2. Airport support

Airport support equipment

3. Construction

- Cranes
- Crawler tractor/dozers
- Excavators
- Rollers
- Rubber tire loaders
- Skid steer loaders
- Tractors/loaders/backhoes

4. Industrial

- Aerial lifts
- Forklifts
- Sweepers/scrubbers
- Terminal tractors

5. Lawn & garden

- Chain saws
- Commercial turf equipment
- Lawn & garden tractors
- Lawn mowers
- Leafblowers/vacuums
- Snowblowers
- Trimmers/edgers/brush cutter

6. Recreational

- All terrain vehicles
- Golf carts

PROPANE LOW-NO_X EMISSIONS

IN-USE DIESEL NO_x MUCH HIGHER THAN REGULATORY LIMITS

 $^{^{*}}$ Brake and distance specific NO $_{\rm x}$ emissions for Urban bin do not include Idle operation, only 1-25 mph operation is included

NGV NO_X CONSISTENTLY LOWER THAN DIESEL

SIGNIFICANT NO_x BENEFIT FOR PROPANE VS DIESEL

LOW-NO_X PROPANE SHOWS "NEAR ZERO" EMISSIONS

AFLEET TOOL 2019 – DIESEL IN-USE & LOW-NO_X EMISSIONS

Diesel in-use NOx feature

EPA's
 MOVES (&
 DEQ) needs
 to revise
 diesel NOx

Heavy-duty low-NOx feature

Added LPG Low-NOx in AFLEET 2019

Anenberg, 2017, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets doi:10.1038/nature22086;

Cai, 2017, Wells to Wheels: Environmental Implications of Natural Gas As A Transportation Fuel

AFLEET TOOL 2019 UPDATES – VEHICLE & FUEL DATA

- Updated petroleum use, GHGs, air pollutants factors from Argonne's GREET 1 2019
 - Updated fuel economy data
- Updated vehicle air pollutant emission factors from EPA's MOVES 2014b
- Updated fuel prices using Clean Cities Alternative Fuel Price Reports
- Update vehicle maintenance costs
 - Ongoing VTO TCO analysis

AFLEET TUTORIAL – DEMO #1

Using the EV Charging Calculator to Examine Charging Benefits

■ 1st step: enter location on "Inputs" sheet

Primary Vehicle Location		
State	CALIFORNIA	
County	LOS ANGELES	

2nd step: adjust electricity & energy/emission assumptions on "Inputs" sheet

Fuel Production Assumptions

Biodiesel Feedstock Source	1 - Soy	1	
	2 - Canola		
	3 - Corn		
	4 - Tallow		
Ethanol Feedstock Source	1 - Corn	1	
	2 - Switchgrass		
	3 - Sugarcane		
	4 - Grain Sorghum		
CNG Feedstock Source	1 - North American NG	1	
	2 - Landfill Gas		
	3 - AD Gas of Animal Waste		
	4 - AD Gas of Wastewater Sludge		
	5 - AD Gas of MSW		
North American NG Feedsto	ock Source	Conventional	Shale
		66%	34%
LPG Feedstock Source		NG	Petroleum
		69%	31%
Source of Electricity for PHE	Vs, EVs, and FCVs (Electrolysis)	7	
	1 - Average U.S. Mix		
	2 to 11 - EIA Region Mix (see map)		
	12 - User Defined (go to 'Backgrour	nd Data' sheet)	

Petroleum Use, GHGs & Air Pollutant Options

Petroleum Use, GHGs & Air Pollutant Calcula	tion Type	1			
1 - WTW Petroleum Use and GHGs & Tailpipe Air Po	ollutants				
2 - WTW Petroleum Use, GHGs, and Air Pollutants					
3 - WTW & Vehicle Production* Petroleum Use, GHGs, Air Pollutants (*LDVs only)					
Diesel In-Use Emissions Multiplier	yes/no	No			
Low NOx Engines - CNG and LNG HDVs	yes/no	Yes			

■ 3rd step: enter key EV charging inputs on "Inputs" sheet

- Default predicted weekly utilization (via drop-down)
- # of chargers, weekly utilization, session power, & charge time
- Can simulate both an L2 and DC Fast chargers

Level 2 Charging Infrastructure				
Predicted Weekly Utilization	Moderate			
Venue	Number of Chargers	Weekly Utilization (sessions/week/ station)	Average Session Power (kW)	Charge Time (minutes/ session)
Parking Lot	1	4.5	4	150
Retail & Leisure	2	5.5	4	90
Education	3	6.0	4	150
Healthcare	4	6.5	4	150
Workplace	5	4.5	4	150
Multi-Unit Dwelling	6	3.0	4	210
Single-Unit Dwelling	7	6.0	4	120

DC Fast Charging Infrastructure				
Predicted Weekly Utilization	Moderate			
		Weekly Utilization (sessions/week/	Average Session Power	Charge Time (minutes/
Venue	Number of Chargers	station)	(kW)	session)
Parking Lot	1	15.0	24	22
Retail & Leisure	2	15.0	24	22
Education	3	15.0	24	22
Healthcare	4	15.0	24	22
Workplace	5	15.0	24	22
Multi-Unit Dwelling	6	15.0	24	22
Single-Unit Dwelling	1	15.0	24	22

Note: Red cells show values changed for demo, cell color doesn't change in AFLEET

■ 4th step (optional): view detailed "EV Charging" sheet

	Parking Lot	Retail & Leisure	Education	Healthcare	Workplace	Multi-Unit Dwelling	Single-Unit Dwelling
Charging Location Category	Public	Public	Public	Public	Workplace	Residential	Residential
<u>Level 2 Charger Inputs</u>							
Default Weekly Level 2 (L2) Utilization	<u>Moderate</u>						
Number of L2 Chargers	1	2	3	4	5	6	7
Weekly Utilization (sessions/week)	4.5	5.5	6.0	6.5	4.5	3.0	6.0
Daily Utilization (sessions/day)	0.6	0.8	0.9	0.9	0.6	0.4	0.9
Average Session Power (kW)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Average Charge Time (hours/session)	2.5	1.5	2.5	2.5	2.5	3.5	2.0
Electricity Dispensed (kWh/session)	10.0	6.0	10.0	10.0	10.0	14.0	8.0
Electricity Dispensed (kWh/day)	6.4	9.4	25.7	37.1	32.1	36.0	48.0
Electricity Dispensed (kWh/year)	2,346	3,441	9,386	13,557	11,732	13,140	17,520
Annual EV Miles from L2 Charging	6,661	9,770	26,645	38,487	33,306	37,303	49,737

View results on "EV Charging Outputs" sheet

	Petroleum								Electricity
	Use	CHC	CO	NOv	DN/10	DN42 E	VOC	COv	-
		GHGs	CO	NOx	PM10	PM2.5	VOC	SOx	Dispensed
Venue	(barrels) (sh	nort tons)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb)	(kWh)
Level 2 Chargers									
Parking Lot	5.2	1.6	22.6	1.7	-0.1	0.1	4.2	-4.2	2,346
Retail & Leisure	7.7	2.4	33.2	2.5	-0.1	0.1	6.2	-6.1	3,441
Education	21.0	6.4	90.5	6.8	-0.2	0.2	16.8	-16.7	9,386
Healthcare	30.3	9.3	130.7	9.8	-0.3	0.3	24.2	-24.2	13,557
Workplace	26.2	8.0	113.1	8.5	-0.3	0.3	21.0	-20.9	11,732
Multi-Unit Dwelling	29.4	9.0	126.7	9.5	-0.3	0.3	23.5	-23.4	13,140
Single-Unit Dwelling	39.2	12.0	168.9	12.7	-0.4	0.4	31.3	-31.2	17,520
L2 Charger Total	159.1	48.6	685.6	51.6	-1.7	1.8	127.1	-126.7	71,123
DC Fast Chargers									
Parking Lot	15.1	4.6	65.1	4.9	-0.2	0.2	12.1	-12.0	6,758
Retail & Leisure	30.2	9.2	130.3	9.8	-0.3	0.3	24.2	-24.1	13,515
Education	45.3	13.9	195.4	14.7	-0.5	0.5	36.2	-36.1	20,273
Healthcare	60.5	18.5	260.6	19.6	-0.7	0.7	48.3	-48.2	27,031
Workplace	75.6	23.1	325.7	24.5	-0.8	0.9	60.4	-60.2	33,789
Multi-Unit Dwelling	90.7	27.7	390.8	29.4	-1.0	1.0	72.5	-72.3	40,546
Single-Unit Dwelling	15.1	4.6	65.1	4.9	-0.2	0.2	12.1	-12.0	6,758
DC Fast Charger Total	332.5	101.6	1,433.1	108.0	-3.6	3.8	265.7	-264.9	148,670

View results on "EV Charging Outputs" sheet

AFLEET TUTORIAL – DEMO #2

Using the Fleet Footprint Calculator to Examine Existing Off-Road Equipment

■ 1st step: enter location on "Inputs" sheet

Primary Vehicle Location		
State	CALIFORNIA	
County	LOS ANGELES	

2nd step: adjust fuel production & energy/emission assumptions on "Inputs" sheet

Fuel Production Assumptions

Tuci i Touuction Assun			
Biodiesel Feedstock Source	1 - Soy	1	
	2 - Canola		
	3 - Corn		
	4 - Tallow		
Ethanol Feedstock Source	1 - Corn	1	
	2 - Switchgrass		
	3 - Sugarcane		
	4 - Grain Sorghum		
CNG Feedstock Source	1 - North American NG	1	
	2 - Landfill Gas		
	3 - AD Gas of Animal Waste		
	4 - AD Gas of Wastewater Sludge		
	5 - AD Gas of MSW		
North American NG Feedsto	ck Source	Conventional	Shale
		66%	34%
LPG Feedstock Source		NG	Petroleum
		69%	31%
Source of Electricity for PHE	Vs, EVs, and FCVs (Electrolysis)	7	
	1 - Average U.S. Mix		
	2 to 11 - EIA Region Mix (see map)		
	12 - User Defined (go to 'Backgrour	nd Data' sheet)	
G.H2 Production Process	1 - Refueling Station SMR (On-site)	1	
	2 - Central Plant SMR (Off-site)		
	3 - Refueling Station Electrolysis (O	n-site)	

Petroleum Use, GHGs & Air Pollutant Options

Petroleum Use, GHGs & Air Pollutant Calcula	tion Type	1			
1 - WTW Petroleum Use and GHGs & Tailpipe Air Po	ollutants				
2 - WTW Petroleum Use, GHGs, and Air Pollutants					
3 - WTW & Vehicle Production* Petroleum Use, GHGs, Air Pollutants (*LDVs only)					
Diesel In-Use Emissions Multiplier	yes/no	No			
Low NOx Engines - CNG and LNG HDVs	yes/no	Yes			

Note: Several fuels are not shown for clarity in this presentation

• 4th step: copy and paste fleet data into "Off-Road Footprint" sheet

- Model year
- Annual hourly usage
- Rated horsepower
- Fuel use

5th step: adjust equipment type via drop-down

		Annual	Rated					Fuel U	lse
Equipment Type	Model Year	Usage (hours)	Horsepower (hp)	Gasoline (gal)	Diesel (gal)	•	B20 (gal)	B100 (gal)	RD20 (gal)
Aerial Lifts	2005	361	41	154					
Aerial Lifts	2005	361	41	154		1,269			
Agricultural Tractors	2005	55	65	50					
Agricultural Tractors	2005	55	65	50					
Airport Support Equipment	2005	681	43	372					
Airport Support Equipment	2005	681	43	372					
All Terrain Vehicles	2005	3,216	2	146					
All Terrain Vehicles	2005	3,216	2	146					
Chain Saws	2005	33	3	2					
Chain Saws	2005	33	3	2					
Commercial Turf Equipment	2005	1,364	25	464					
Commercial Turf Equipment	2005	1,364	25	464					
Cranes	2005	99	365		500				
Cranes	2005	99	365		500				

View existing fleet results on "Footprint Outputs" sheet

	Petroleum Use	GHGs	СО	NOx	PM10	PM2.5	VOC	SOx
Vehicle Type	(barrels)	(short tons)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb)
Aerial Lifts	6.4	4.4	749.0	58.4	1.1	1.0	17.7	0.0
Agricultural Tractors	2.1	1.2	516.4	36.6	0.7	0.7	12.1	0.0
Airport Support Equipment	15.5	8.8	3,772.1	290.1	5.5	5.1	91.2	0.1
All Terrain Vehicles	6.1	3.5	1,402.8	7.1	71.5	65.8	1,860.0	0.0
Chain Saws	0.1	0.0	81.3	0.5	3.0	2.7	18.8	0.0
Commercial Turf Equipment	19.3	11.0	4,755.0	342.4	6.9	6.3	112.3	0.1
Cranes	24.9	13.8	56.9	430.6	12.7	12.3	22.7	0.2
Crawler Tractor/Dozers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Excavators	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Forklifts	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Golf Carts	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lawn & Garden Tractors	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lawn Mowers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leafblowers/Vacuums	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rollers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rubber Tire Loaders	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Skid Steer Loaders	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Snowblowers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sweepers/Scrubbers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Terminal Tractors	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tractors/Loaders/Backhoes	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Trimmers/Edgers/Brush Cutter	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	74.4	42.8	11,333.5	1,165.7	101.4	93.9	2,134.9	0.4

View existing fleet results on "Footprint Outputs" sheet

THANK YOU!!!

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

This work has been supported and assisted by:

Linda Bluestein: U.S. DOE

Dennis Smith: U.S. DOE

Marcy Rood: Argonne

Michael Wang: Argonne

Hao Cai: Argonne

Shannon O'Donnell, Maddy Seveska, Sandra Marquez

