- Housed at the Regional Planning Commission for the New Orleans Metro Area
- Part of the Clean Cities Coalition Network
- Work with Municipal Fleets & Elected Officials including:
 - Jefferson Transit
 - New Orleans EMS
 - City/Parish (County) Fleet Pool Vehicles
 - Refuse Haulers with Contracts with the Municipalities
Alternative Fuels Data Center

- Unbiased Information
- Updated Regularly
- Clear and Easy to Understand
- Resources for more Technical Information

Goal:
Provide resources to help make your project a success!!

Useful for:
- Planning out a Project
- Resources for getting Everyone on Board
Pages I Use on a Regular Basis

- Fuels & Vehicles
- Vehicle Search
- Information by Fleet Application
- Locate Stations
- Laws & Incentives
- Case Studies
- Publications
Fuels & Vehicles

Great starting place for learning about the various fuels!

- Basics
- Benefits & Considerations
- Stations
- Vehicles
- Laws & Incentives
Vehicle Search

The Information Source for Alternative Fuels and Advanced Vehicles

The Alternative Fuels Data Center (AFDC) provides information, data, and tools to help fleets and other transportation decision makers find ways to reach their energy and economic goals through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.
Vehicle Search

Alternative Fuels Data Center

Alternative Fuel and Advanced Vehicle Search

Find and compare alternative fuel vehicles (AFVs), engines, and hybrid/conversion systems. Some of the light-duty AFVs in this tool may count toward vehicle-acquisition requirements for federal fleets and state and alternative fuel provider fleets regulated by the Energy Policy Act (EPAct). Access a list of light-duty Model Year 2018 Alternative Fuel and Advanced Technology Vehicles [1] or download a spreadsheet of all vehicles [1].

Vehicles by Type

- Sedan/Wagon
- Truck
- SUV
- Van
- Step Van
- Vocational/Cab Chassis
- Street Sweeper
- Refuse
- Tractor
- Shuttle Bus
- Transit Bus
- School Bus

Vehicles by Manufacturer

- Light-Duty
- All
- Search

- Medium- and Heavy-Duty
- All
- Search

Engines and Hybrid/Conversion Systems

For medium- and heavy-duty vehicles:

- Engine & Power Sources
- Conversion & Hybrid Systems

Determine what fuels/advanced vehicles are available for specific vehicle types.
Vehicle Search

Alternative Fuels Data Center

Alternative Fuel and Advanced Vehicle Search

Find and compare alternative fuel vehicles (AFVs), engines, and hybrid/conversion systems. Some of the light-duty AFVs in this tool may count toward vehicle-acquisition requirements for federal fleets and state and alternative fuel provider fleets regulated by the Energy Policy Act (EPAct). Access a list of light-duty Model Year 2013 Alternative Fuel and Advanced Technology Vehicles or download a spreadsheet of all vehicles.

Vehicles by Type

- Sedan/Wagon
- Truck
- SUV
- Van
- Step Van
- Vocational/Cab Chassis
- Street Sweeper
- Refuse
- Tractor
- Shuttle Bus
- Transit Bus
- School Bus

Vehicles by Manufacturer

Light-Duty
- All

Medium- and Heavy-Duty
- All

Engines and Hybrid/Conversion Systems

For medium- and heavy-duty vehicles:

- Engine & Power Sources
- Conversion & Hybrid Systems

About the Data
Vehicle Search

Alternative Fuels Data Center

Alternative Fuel and Advanced Vehicle Search

Find and compare alternative fuel vehicles (AFVs), engines, and hybrid conversion systems. Some of the light-duty AFVs in this tool may count toward vehicle-acquisition requirements for federal fleets and state and alternative fuel provider fleets regulated by the Energy Policy Act (EPAct). Access a list of light-duty Model Year 2010 Alternative Fuel and Advanced Technology Vehicles [X] or download a spreadsheet of all vehicles [X].

Vehicles by Type
- Sedan/Wagon
- Truck
- Step Van
- Vocational/Cab Chassis
- Tractor
- Shuttle Bus
- Street Sweeper
- Busing/Coach
- Motorcycle
- Snowplow
- Light-Duty Van
- Medium- and Heavy-Duty

Vehicles by Manufacturer
Light-Duty
- All

Medium- and Heavy-Duty
- All

Pick Fuel/Technology Available for Vans
- All
- Biodiesel (B20)
- Ethanol (E85)
- Hydrogen Fuel Cell
- CNG - Compressed Natural Gas
- Propane
- Electric
- Plug-in Hybrid Electric
- Hybrid Electric

Search
Vehicle Search

Alternative Fuel and Advanced Vehicle Search

Find and compare alternative fuel vehicles (AFVs), engines, and hybrid/conversion systems. Some of the light-duty AFVs in this tool may count toward vehicle-acquisition requirements for federal fleets and state and alternative fuel provider fleets, regulated by the Energy Policy Act (EPAct). Access a list of light-duty Model Year 2018 Alternative Fuel and Advanced Technology Vehicles or download a spreadsheet of all vehicles.

Links go to OEM websites
Need to check Vehicle Availability in Your Area
Vehicle Search

Alternative Fuel and Advanced Vehicle Search

Find and compare alternative fuel vehicles (AFVs), engines, and hybrid/conversion systems. Some of the light-duty AFVs in this tool may be used to meet fleet-acquisition requirements for federal fleets and state and alternative fuel provider fleets regulated by the Energy Policy Act (EPAct). Access a full data study Model Year 2018 Alternative Fuel and Advanced Technology Vehicles or download a spreadsheet of all vehicles.

Search Results - 1 - 8 of 21 vehicles

Filter by: Fuel/Technology: CNG - Compressed Natural Gas, Propane, Plug-in Hybrid Electric | Class/Type: Van

Manufacturer: All

Chevrolet Express 2500 (2018)
CNG - Compressed Natural Gas Van

- Engine: 6.0L V8
- Transmission: Auto

Chevrolet Express 2500 (2018)
Propane Van

- Engine: 6.0L V8
- Transmission: Auto

Chrysler Pacifica PHEV (2018)
Plug-in Hybrid Electric Van

- Fuel Economy: 94 MPG city, 80 MPG highway
- Engine: 3.6L V6, 66 kW electric motor
- Transmission: Auto

Ford Transit 150/250 Van/Wagon (2018)
CNG - Compressed Natural Gas Van

- Engine: 3.7L V6
- Transmission: Auto

Ford Transit 150/250 Van/Wagon (2018)
Propane Van

- Engine: 3.7L V6
- Transmission: Auto

Ford Transit Connect Van/Wagon (2018)
CNG - Compressed Natural Gas Van

- Engine: 2.5L I4
- Transmission: Auto

Download Information for Tables, Sorting, Going through Options, etc.
Information by Fleet Application

The Information Source for Alternative Fuels and Advanced Vehicles

Traveling between the United States and Canada just got easier with updates to the Alternative Fueling Station Locator.

The Alternative Fuels Data Center (AFDC) provides information, data, and tools to help fleets and other transportation decision makers find ways to reach their energy and economic goals through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.
Information by Fleet Application

Find Vehicle Types easily!
Learn from Fleets with similar operations

Tip: Contact the Clean Cities Coordinator for more information: https://cleancities.energy.gov/coalitions/contacts/
Information by Fleet Application

Publications:

- Reports
- Brochures & Fact Sheets
- Presentations
Locate Stations

- Check for existing infrastructure around fleet’s “home base” as well as in the service area
 - Many fleets don’t realize that fueling stations are available

- Identify gaps in fueling infrastructure
 - Determine if a fleet will need their own fueling station
Laws & Incentives

- Check current Federal incentives
- Check our State incentives for links to the original legislation to re-read
- Look at other States’ laws & incentives to inform our efforts
Laws & Incentives

Search Federal and State Laws and Incentives

Search incentives and laws related to alternative fuels and advanced vehicles. Choose one or more jurisdictions to start your search. Select additional options to narrow your search.

Category
- Jurisdiction
 - Federal
 - Alabama
 - Alaska
 - Arizona
 - Arkansas
 - California
 - Federal
- Technology/Fuel
 - All
 - Biodiesel
 - Ethanol
 - Natural Gas
 - Propane (LPG)
 - Hydrogen Fuel Cells
 - EVs
- Incentive/Regulation
 - All
 - Acquisition or Fuel Use
 - Grants
 - Driving or Idling
 - Tax Incentives
 - Registration or
- User
 - All
 - Vehicle Owner or Driver
 - Fleet Purchaser or Manager
 - Fueling or TSE Infrastructure Owner
 - Alternative Fuel

Search Results

Type: Incentives | Jurisdiction: Federal

A tax credit is available for the purchase of a new qualified PEV that draws propulsion using a traction battery that has at least five kilowatt-hours (kWh) of capacity, uses an external source of energy to recharge the battery, has a gross vehicle weight rating of up to 14,000 pounds, and meets specified emission standards. The minimum credit amount is $2,500, and the credit may be up to $7,500, based on each vehicle’s traction battery capacity and the gross vehicle weight rating. The credit will begin to be phased out for each manufacturer in the second quarter following the calendar quarter in which a minimum of 200,000 qualified PEVs have been sold by that manufacturer for use in the United States. This tax credit applies to vehicles acquired after December 31, 2009. For more information, including qualifying vehicles and sales by manufacturer, see the Internal Revenue Service (IRS) PEV Credit website. Also refer to IRS Form 8936, which is available via the IRS Forms and Publications website.

(Reference Public Law 112-240, Section 403; and 26 U.S. Code 30D)

Point of Contact
U.S. Internal Revenue Service
Phone: (800) 829-1040
http://www.irs.gov/
Case Studies

- See how other similar fleets made it work
- Find contacts for projects for additional information on the project
 - Fleet Managers
 - Clean Cities Coordinators
Case Studies

Choose one or more items from the following categories.

Fuel/Technology
- All Fuels
- Biodiesel
- Ethanol
- Hydrogen
- Propane
- Natural Gas
- All-Electric
- Hybrid Electric
- Plug-In Hybrid Electric
- Fuel Economy Improvements
- Delivery Services
- Long-Haul Trucking
- Refuse Collection
- Taxi Services
- Airport
- Park Services
- Public Transit
- School Transportation
- Shuttle Services
- Off-Road

Applications
- All Applications
- Long-Haul Trucking
- Refuse Collection
- Taxi Services
- Airport
- Park Services
- Public Transit
- School Transportation
- Shuttle Services
- Off-Road

- Law Enforcement

Show your choice by clicking the checkbox next to each choice.

Search Results | 4 case studies

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1, 2017</td>
<td>Case Study Summary - Idle Reduction Technologies for Emergency Service Vehicles</td>
<td>Document</td>
</tr>
<tr>
<td>July 20, 2013</td>
<td>Idaho County Employs FFVs and Idle Reduction</td>
<td>Video</td>
</tr>
<tr>
<td>April 7, 2011</td>
<td>County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency</td>
<td>Web Story</td>
</tr>
<tr>
<td>Nov. 27, 2009</td>
<td>Dallas Police Department Reduces Vehicle Idling</td>
<td>Video</td>
</tr>
</tbody>
</table>

Showing 1 to 4 of 4
County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency

“We’re cutting our fuel use, and we’re doing it safety—everything runs at peak performance. We’re never going to leave our people hanging or compromise their safety.”

Mark Tolman; Fleet Manager; Canyon County, Idaho

With a population of about 200,000, Canyon County, Idaho, may not be very big. But its recent successes in reducing petroleum use are enormous. About two years ago, Canyon County Fleet Manager Mark Tolman puzzled over a problem shared by countless public officials throughout the country. How would he provide a high level of service to his community in the face of shrinking budgets?

Tolman worked with Treasure Valley Clean Cities to develop a strategy that made better use of his existing fleet resources while also embracing new technologies and fuels. He convened a “utilization team” that focused on collecting input from vehicle drivers in every county department. He also purchased fleet-management software that allowed him to better track and scrutinize fuel use, vehicle utilization, idling time, and employee mileage reimbursements.

Armed with the new data, Tolman trimmed the county’s fleet from 325 vehicles to 220. He developed a new replacement schedule that incorporated E85 and hybrid vehicles into the fleet wherever possible. He started filling tires with nitrogen. And the Fleet Department installed two new 12,000-gallon fuel tanks (one for gasoline, one for ethanol) and a blending dispenser that allows workers to specify the level of ethanol in the fuel they use.

Before Tolman’s project began, he knew fuel was being wasted in idling patrol cars in the Sheriff’s Department, but once he had the hard numbers in front of him, “It was just shocking,” he said. Each patrol car was idling for up to five hours per day, using about 1 gallon of fuel per hour of idle time.

Canyon County fleet workers installed idle-reduction equipment on nearly all of the more than 60 patrol cars in the sheriff’s department, eliminating 36 “ghost miles” and 100 pounds of carbon dioxide emissions per day for each car. “We’re cutting our fuel use, and we’re doing it safely—everything runs at peak performance. We’re never going to leave our people hanging or compromise their safety,” Tolman said.

The Canyon County Fleet Department is eliminating an estimated 1.4 million pounds of carbon dioxide emissions every year and improving its vehicles’ fuel economy by 4 mpg to 6 mpg.

“Using technologies that are already widely available, we realized immediate cost savings to Canyon County,” he said. “We are maintaining a top-notch fleet, trimming our budget with minimal disruptions to ongoing operations, reducing our dependence on foreign oil, shrinking our environmental footprint, and serving as an example for other fleets.”
Great for meetings to get other parties on board & Press Kits for ribbon cuttings

Don’t reinvent the wheel – check if USDOE already has a handout/ publication on a topic before creating one
Publications

Find publications about alternative transportation, including alternative fuels, advanced vehicles, and regulated fleets.

Keywords
- Biodiesel
- All-Electric Vehicles
- Electricity
- Plug-in Hybrid Electric Vehicles
- Ethanol
- Hybrid Electric Vehicles
- Hydrogen
- Flex Fuel Vehicles
- Natural Gas
- Fuel Cell Vehicles
- Propane
- Natural Gas Vehicles
- Methanol
- Propane Vehicles
- Diesel Vehicles
- Fuel Economy
- Idling Reduction
- Vehicle Conversions

Search Results

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Truck Idling Reduction</td>
<td></td>
<td>3/8/2017</td>
<td>Brochures & Fact Sheets</td>
</tr>
<tr>
<td>National Idling Reduction Network News</td>
<td></td>
<td>1/10/2017</td>
<td>Newsletters</td>
</tr>
<tr>
<td>Idling Reduction for Personal Vehicles</td>
<td></td>
<td>5/7/2015</td>
<td>Brochures & Fact Sheets</td>
</tr>
<tr>
<td>Case Study - Idling Reduction Technologies for Emergency Service Vehicles</td>
<td></td>
<td>1/1/2015</td>
<td>Reports</td>
</tr>
<tr>
<td>Idling Reduction for Emergency and Other Service Vehicles</td>
<td></td>
<td>5/7/2015</td>
<td>Brochures & Fact Sheets</td>
</tr>
<tr>
<td>Economies of Idling Reduction Options for Long-Haul Trucking</td>
<td>Gaines, L</td>
<td>9/1/2017</td>
<td>Brochures & Fact Sheets</td>
</tr>
<tr>
<td>Case Study Summary - Idling Reduction Technologies for Emergency Service Vehicles</td>
<td>Gaines, L</td>
<td>7/1/2017</td>
<td>Brochures & Fact Sheets</td>
</tr>
<tr>
<td>Energy Use and Emissions Comparison of Idling Reduction Options for Heavy-Duty Diesel Trucks</td>
<td></td>
<td>11/15/2008</td>
<td>Reports</td>
</tr>
<tr>
<td>Idling Reduction for Long-Haul Trucking: An Economic Comparison of On-Board and Wayside Technologies</td>
<td>Gaines, L; Wekerleimer, P</td>
<td>9/1/2018</td>
<td>Reports</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 48 results

Technology Bulletins

- Clean Cities Alternative Fuel Price Report, July 2018

Newsletters

- Using Recent Land Use Changes to Validate Land Use Change Models

Latest Additions

- All Latest Additions
Publications

Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

Jeffrey Gender, Matthew Earleywine and Witt Sparks
National Renewable Energy Laboratory

ABSTRACT

While it is well known that “MPG will vary” based on how one drives, little independent research exists on the aggregate fuel savings potential of improving driver efficiency and on the best ways to motivate driver behavior changes. This paper finds that reasonable driving style changes could deliver significant fuel savings potential. This paper proposes that various feedback approaches may be insufficient to convince many people to adopt efficient driving habits. To quantify the on-road fuel savings for drive cycle modification, the project examined completely eliminating stop-and-go driving plus ancillary idling, and adjusting acceleration rates and cruise speeds to ideal levels. Even without changing the drivers’ behavior, the project demonstrated an aggregate fuel savings of over 30%, but would in reality only be achievable through the availability of vehicle and traffic data. Considering the effects of real-world driving conditions, efficient driving behaviors could reduce fuel use by 20% on aggregate during drives and by 30-40% on more missionarily driven trips.

To evaluate potential improvements in changing driving habits, the project team conducted a literature survey of driving behavior influences and observed various drivers from on-road experiments with different driving styles. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere on time, and the power theft available from the vehicle. Existing feedback approaches often effectively deliver efficiency information and instruction, but do not always do so in an easy way that avoids unintended consequences and helps transmit other driving behavior influences. Based on these findings the report details three recommendations for maximizing fuel savings from potential drive cycle improvement: (1) Leverage applications with enhanced incentives, (2) Use an approach that makes it easy and is widely-deployable to motivate consuming vehicles and automakers large and widespread efficiency improvements.

INTRODUCTION

Data show that the required fuel use can vary by plus or minus 20% or drivers and their choices. Some of this variability in fuel use stems from operating speed and acceleration rates, and speed and acceleration rates influence drivers’ perceptions of both the driving task and the environmental contribution made by the vehicle. This study explores the effect of real-world driving conditions on the aggregate fuel savings potential of the project an idling reduction

APPROACH

NREL divided the driver feedback tasks (1) quantifying the aggregate fuel savings potential, (2) influence drivers’ perceptions and (3) assessing various drivers in a laboratory and expert study for the simulation effort in the Energy Systems Division.

Case Study – Idling Reduction Technology for Emergency Service Vehicles

Energy Systems Division

Work Truck Idling Reduction

Work trucks are everywhere—delivering packages to our doorsteps, removing refuse, and towing disabled vehicles. Unlike the 16-wheeler that travel over 500 miles per day, work trucks typically travel short distances from home base to work site and are tailored to perform a specific service. Utility trucks are common work trucks used for installing and repairing electric and telecommunication lines, powering equipment and tools, and supplying heating, ventilation, and air-conditioning (HVAC) for works in the cab or down a street.

In order for utility trucks to carry out these functions, power from the vehicle’s transmission is diverted to provide power for on-board equipment such as mining and lowering equipment in which the vehicle’s engine runs continuously, though work may only be performed intermittently. The idling while the vehicle is equipped and is not in use wastes fuel, causes engine wear, and generates noise and emissions.

Solutions

To eliminate unnecessary idling for PTO, auxiliary power sources can be used to more efficiently provide power to on-board equipment. Auxiliary power sources typically include batteries charged from the electrical grid overnight, recharged while the vehicle’s engine is running, or through regenerative technology that captures energy lost during braking while the vehicle is in motion.

Utility companies can purchase a new hybrid truck or retrofit an existing truck with an auxiliary battery system in power electric or hydraulic equipment and provide climate control for the cab compartment.

The reduction in idling significantly reduces the amount of noise and emissions produced and creates a safer work environment for the utility crew.
www.afdc.energy.gov

Unbiased source of information

Tools to help your project a success!

Updated regularly
How would you use the AFDC in your Day-to-Day Work?

AFDC: www.afdc.energy.gov/

Find your local Clean Cities Coordinator:
https://cleancities.energy.gov/coalitions/contacts/

Technical Response Service:
technicalresponse@icf.com / 1-800-254-6735

Alexis Schayowitz, Senior Manager
ICF
alexis.schayowitz@icf.com
(617) 250-4281

Rebecca Otte, Director
Southeast Louisiana Clean Fuel Partnership
rotte@norpc.org
(504) 483-8513