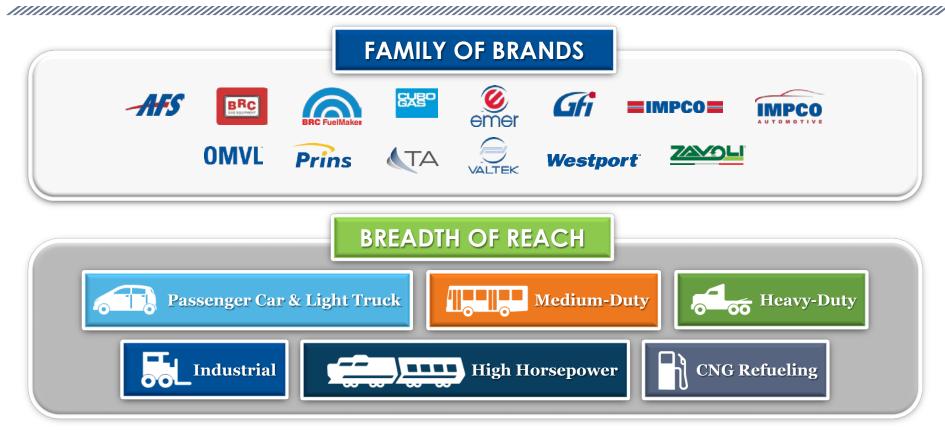
## Westport

# PRODUCT & TECHNOLOGY UPDATE – NGVTF OCT 2016

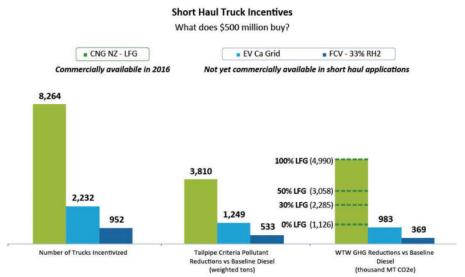

Brad Douville, Vice President, Business
Development & Product Management

## New Merged Company

# Westport Guel Systems

- » Westport Innovations Inc. and Fuel Systems Solutions Inc. merged on June 1, 2016 to create Westport Fuel Systems Inc.
- » A premier, global company for the engineering, manufacturing and supply of alternative fuel systems and components.

## Family of Brands and Breadth of Reach




## Opportunity Gasoline-Derived Near Zero NOx Engines



- » HD gasoline engines certify to same standards as diesel engines
- Established Near Zero (NZ) NOx techniques could be readily transferred to NG versions of these engines to bring them to the optional 0.02 g/bhp-hr standard
- » NZ NOx engines are much more cost effective than BEVs in applications such as shuttle buses
- » But will NZ NGVs qualify under the California SIP?





Incentive amounts based on incremental purchase cost of advanced heavy-duty short haul trucks over baseline diesel truck Based on emissions and vehicle activity data from CARB EMFAC 2014 Weighted emissions = NOx + 20\*PM10 + ROG

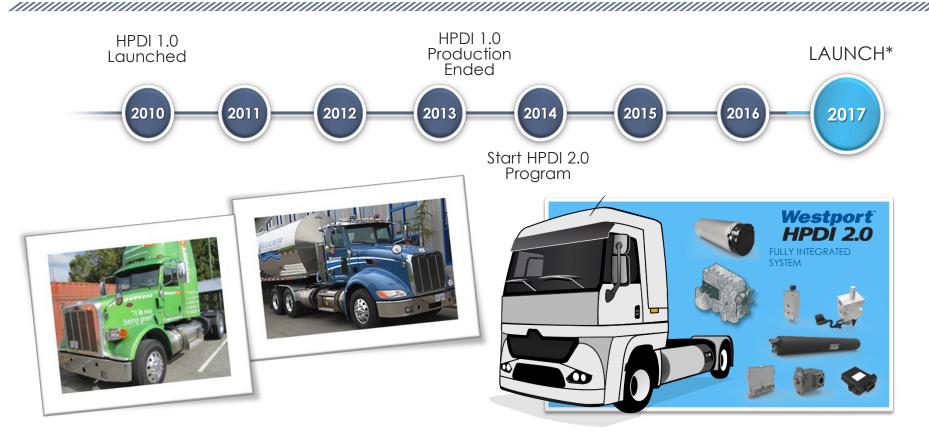
GHG emissions based on illustrative fuel pathways calculated by ARB Staff using CA-GREET 2.0

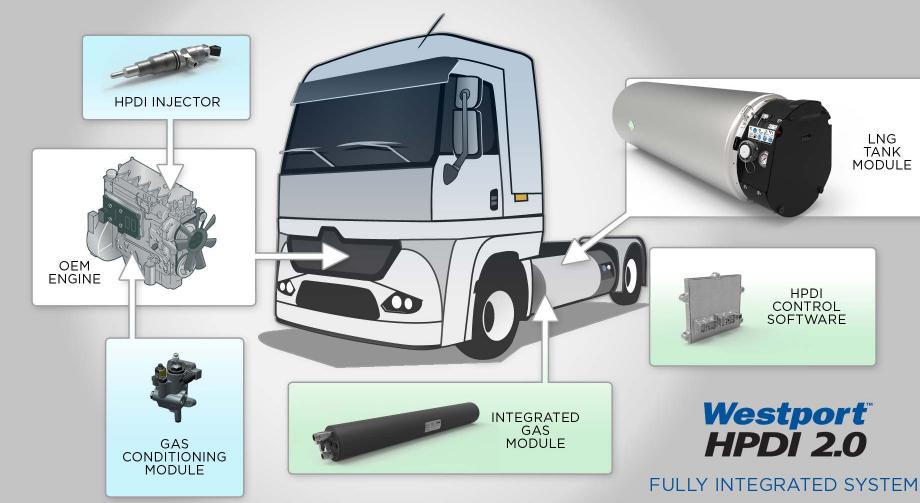
Cost effectiveness uses Moyer program capital recover factors based on typical retention period of first owner

Figure 29. Hypothetical comparison of truck deployments and benefits based on a \$500 million investment

Ref: "Game Changer, Next Generation Heavy Duty Natural Gas Engines Fueled By Renewable Natural Gas, Gladstein, Neandross and Associates, 2016

## Westport Engine Technology Applications


| APPLICATION                                 | FUEL<br>CHOICE | ENGINE TECHNOLOGIES            |  |
|---------------------------------------------|----------------|--------------------------------|--|
| High Horsepower  • mining  • rail  • marine | LNG            | high pressure direct injection |  |
| Heavy-Duty Vehicles  on-highway trucks      |                |                                |  |
| Medium-Duty Vehicles                        | CNG            | high efficiency spark ignited  |  |
| Light-Duty Vehicles                         |                |                                |  |






## **Product Progression**









Westport HPDI 2.0

## Technology Progression: Injector Westport HPDI 2.0





Gen 1 Gen 2

## Technology Progression: IGM



Gen 1 Gen 2



Integrated Gas Module (IGM)

### Westport LNG Tank Module



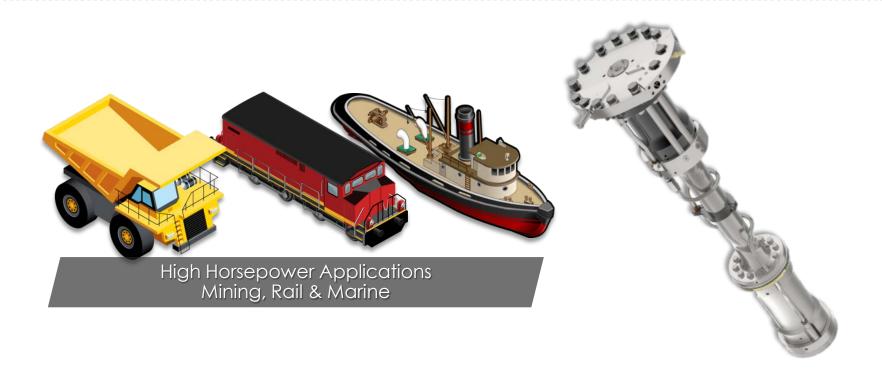
- » Completely Re-Designed
- » Cost Reduced, Quality Improved
- » Integrated LNG Pump
- » High & Low Pressure Variants
- » Enables cold LNG for increased range and longer hold times



## LNG Tank Validation Testing





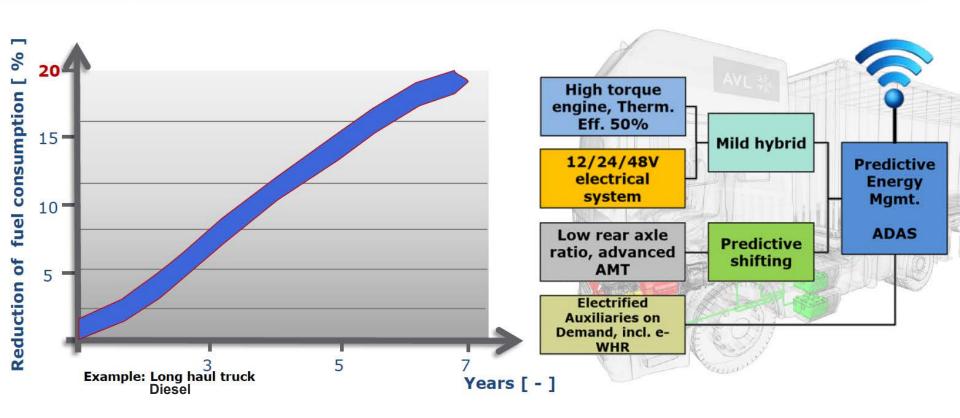

» Example tests:

- Bonfire
- Vibration
- Drop



### LNG Pump (HHP)

## Westport HPDI 2.0



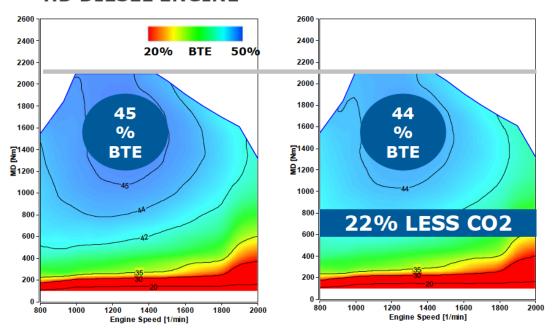

## GHG Legislation for Commercial Vehicles

|            | Naming                                                    | Status                                   | Introduction/<br>Validity | Evaluation Method                                                     | Limits                                           | Severity |
|------------|-----------------------------------------------------------|------------------------------------------|---------------------------|-----------------------------------------------------------------------|--------------------------------------------------|----------|
|            | GHG & Fuel Economy<br>Phase 1                             | In place – fully<br>phased in by<br>2018 | Until 2020                | Engine: Transient duty cycle Sim. vehicle standard: <b>GEM 2.0.1</b>  | Engine:n475 g/hp-hr<br>GHG 72 g/tonmile          | Moderate |
|            | GHG Phase 2                                               | In publication                           | 2021 – 2027               | Engine: Transient duty cycle<br>Sim. vehicle standard: <b>GEM 3.0</b> | Engine: approx. –7%<br>GHG up to -25% (vs. 2017) | Severe   |
|            | CO <sub>2</sub> Emission<br>monitoring and<br>declaration | Under<br>discussion                      | In 2018                   | VECTO vehicle simulation                                              | Monitoring and declaration to public             | Severe   |
|            | CO2 limits                                                | Under<br>discussion                      | Exp. in 2022              | VECTO vehicle simulation                                              | Limits TBD                                       | -        |
| •          | Fuel Efficiency for Diesel Vehicles 2015                  | In place                                 | Since 2015                | JE05 & constant speed 80km/h                                          | Tractor: 2.01 km/L (-12,2% vs<br>2002 level)     | Moderate |
|            | 2025                                                      | Under<br>discussion                      | Exp. in 2025              | JE05 & constant speed 80km/                                           | Tractor reduction: -15%                          | Severe   |
| <b>(a)</b> | Fuel Efficiency<br>Standard                               | Under<br>discussion                      | Exp. in 2018/21           | Constant speed 40/60km/h                                              | In L/100km                                       | Moderate |
| *‡         | Fuel Cons. Stage 2                                        | In place                                 | Since 2014                | C-WTVC, Simulation based demonstration                                | Tractor av. 45 L/100km                           | Moderate |
|            | Fuel Cons. Stage 3                                        | Draft                                    | Exp. 2019                 | C-WTVC, Simulation based demonstration                                | Tractor av. 38 L/100km, -15%                     | Moderate |







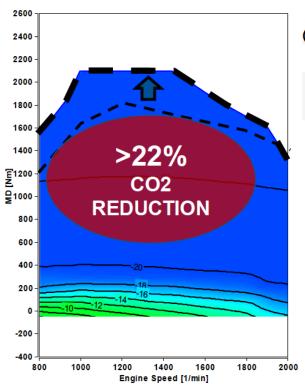

#### POSSIBLE BREAKTHROUGH TECHNOLOGY

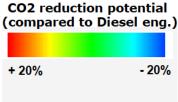


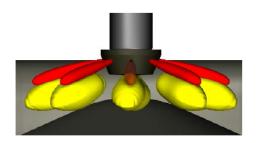
IS THERE A SINGLE TECHNOLOGY THAT CAN REDUCE CO<sub>2</sub> BY MORE THAN 20% (e.g. GHG Ph2)

#### BEST IN CLASS HD DIESEL ENGINE

#### **NATURAL GAS ENGINE**





#### BRAKE THERMAL EFFICIENCY


**AVL TEST RESULTS** 

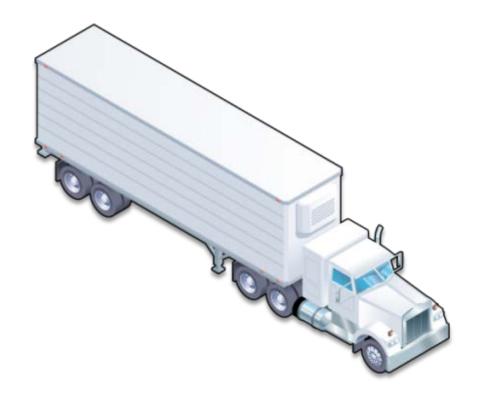
## CO2 REDUCTION POTENTIAL OF NATURAL GAS DIRECT INJECTION (HPDI)










- SAME POWER DENSITY AS DIESEL
- >20% CO<sub>2</sub> REDUCTION
- CO<sub>2</sub> REDUCTION IN THE WHOLE MAP

#### **AVL TEST RESULTS**

### Help Needed



- » Industry & Government support needed to bring HPDI 2.0 to North America
- » Natural Gas was excluded from DOE's SuperTruck I and II Programs with \$135M and \$80M in funding, respectively



### Timeline of Diesel-Derived Spark-Ignited NG Engine Innovations

Lean Burn Technology Cummins L10G launched 1st CNG bus engine Stoichiometric with Cooled EGR Technology

1<sup>st</sup> demonstrated in 2004 1<sup>st</sup> launched - CWI ISL G - in 2007 High Efficiency SI (HESI) Technology 1st demonstrated

1992

2004

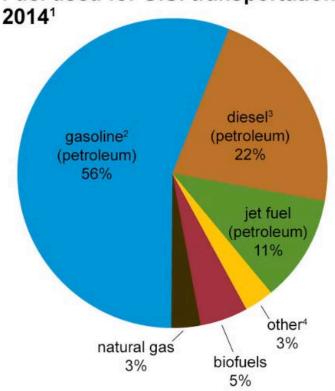
2007

High excess air with turbocharging Much lower NOx & PM than diesel 25% lower peak torque than diesel

Oxygen-free exhaust using cooled EGR → 3-way catalyst 15-25% lower peak torque than diesel



Retains stoich + EGR combustion Removes constraint of common cylinder head with diesel engine Higher peak torque than diesel Enables downsizing




- Tumble air motion
- High turbulent kinetic energy (TKE) at point of ignition



## Gasoline Still by Far the Largest Share of Fuel Consumption Mix

Fuel used for U.S. transportation,



- » 60% of transportation fuel is finished motor gasoline (including 4% ethanol)
- » Mainly used in passenger cars, light and medium duty trucks

Note: Due to rounding, data may not sum to exactly 100%.

Source: U.S. Energy Information Administration, *Monthly Energy Review* (March 2015), Tables 2.5 and 3.8c, preliminary data



<sup>1</sup> Based on energy content

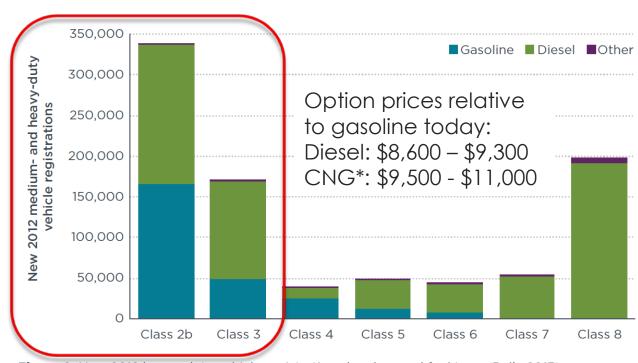
<sup>&</sup>lt;sup>2</sup> Motor gasoline and aviation gas; excludes ethanol

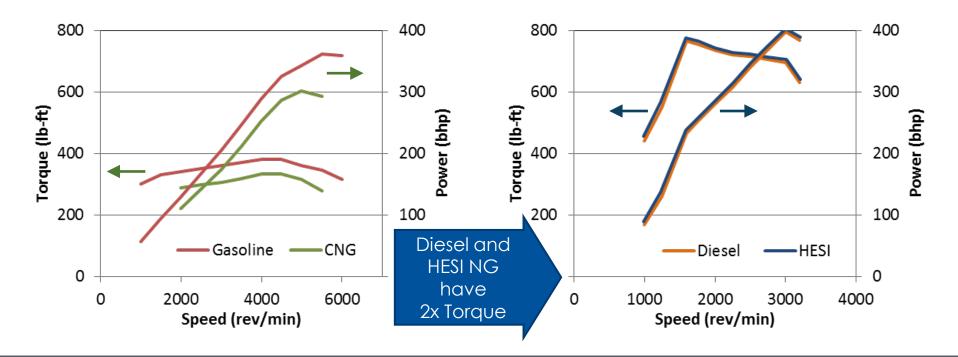
<sup>3</sup> Excludes biodiesel

Electricity, liquid petroleum gas, lubricants, residual fuel oil, and other fuels

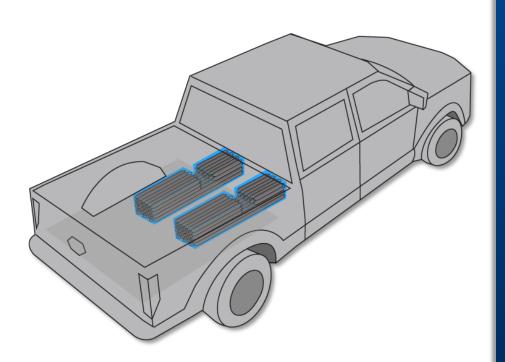
## Heavy Duty Pickup Trucks (Class 2b/3)







Figure 2. New 2012 heavy-duty vehicle registrations by class and fuel type (Polk, 2013)

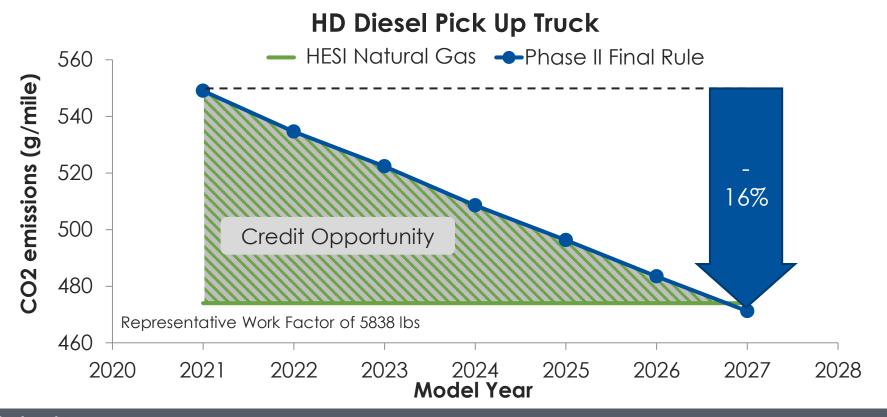
<sup>\*</sup> Refers to today's gasoline-derived NG engines with conventional CNG cylinders


## HD Pickup Truck Engine Power & Torque

### GASOLINE / CNG

#### DIESEL / HESI CNG




### Conformable CNG Tanks



- Folds to fit anywhere
- Lighter, lower-cost systems
- Seamless design
- Continuous manufacturing
- Industry standard materials



## Early Compliance & Credit Generation



## Proposed SuperPickupTruck Program

- » One year ago: Proposed \$50M from DOE:
  - Follow-up to arpa-e MOVE program
  - Low-cost home refuelling
  - Conformable CNG tanks
  - High efficiency, high performance powertrains
  - Self-refueling vehicles
  - Adsorbed NG
- » Have since de-scoped to \$12M program:
  - Conformable CNG tanks
  - High efficiency, high performance powertrains
  - Consortium funding nearly there still \$2-4M short!



## Summary of Opportunities

 NZ NOx CNG shuttle buses



>20% GHG
 reduction
 LNG HD trucks





3. -16% GHG MD/LD trucks

SuperPickup Truck Program

# Vestport

Brad Douville
VP, Business Development
& Product Management
Westport

Westport

M 1-604-649-4459

T 1-604-718-2042

bdouville@westport.com

www.westport.com