Natural Gas Hybridization

NGVTF
Gas Technology Institute
Ted Barnes

GTI Company Overview

> Independent, not-for-profit, established in 1941
> Over 300 employees (~100 in CA)
> 350 active projects
> 1,200 patents; 500 products
Reasons for Heavy Duty Hybrids

• Heavy Duty Truck Hybridization – Why?
 • Critical environmentally sensitive areas looking for “zero emission” options; natural gas hybrids allow for near-term, at scale, real-world applications
 • Increased range, smaller battery pack, ability to keep same duty cycle as diesel
 • Fuel economy and low-end torque improvements can be substantial
 • Allows for zero tailpipe emissions in critical areas for limited range or through overhead (or rail) power transfer
 • NOx emissions already “near-zero” for natural gas but GHG needs constant improvement (diesel-hybrid and biodiesel have significant NOx issues)

Current GTI Hybrids Projects

• Energy Commission – Hybrid Trucks
 • US Hybrid and UC Riverside major technology partners
 • Two projects with natural gas Class 8 trucks

• US DOE – SCAQMD – ZECT Program
 • BAE and Kenworth major technology partners
 • Drayage truck with natural gas “genset”, BAE Hybrid Drive propulsion, Plug-in, Pantograph for zero-emission operation
Abas Goodarzi, Ph.D., P.E. & Farzad Ahmadkhanlou, Ph.D., P.E.
NGVT Forum 2016

Integrated Electric, Fuel Cell and Hybrid Powertrain Components Powering Clean Mobility

US Hybrid Group

- US Hybrid
 HQ: Torrance, CA
 Year Established: 1999
 Core Competency: Electric Powertrain for Electric, Hybrid and Fuel Cell Heavy Duty Vehicles

- US FuelCell
 South Windsor, CT
 Year Established: 2013
 Core Competency: Fuel Cell Power Plant

- Magmotor Corporation
 Worcester, MA
 Year Established: 1876 (Acquired by US Hybrid in 2008)
 Core Competency: Servo Motors and Drives Automation, Robotic and Semiconductor Mfg.
Business Focus is Commercial Vehicles

<table>
<thead>
<tr>
<th>Class</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Medium</td>
<td>Heavy</td>
<td>Heavy</td>
</tr>
<tr>
<td>Weight Range (GVWR)</td>
<td>19,501-26,000</td>
<td>26,001-33,000</td>
<td>>33,000</td>
</tr>
</tbody>
</table>

Examples

- Medium: Refuse, Construction, Drayage, Shuttle Bus
- Heavy: Municipality, Agriculture, Mining
- Heavy: Monorail, Sao Palo Brazil, Kuala Lumpur Malaysia, Mumbai India

Business Focus is Heavy Duty Commercial Vehicles

US Hybrid Time Line

We have been making and operating Hybrid Heavy Duty Commercial Vehicles for decades

- 1999
- 2002
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018

- FC BOP to UTC
- PM-APU
- Parallel Hybrid
- Monorail Traction
- Series Hybrid
- PHEV Hybrid
- Near Zero Emission Powertrain
- Battery Electric Dragee Trucks
- Self Powered Carts
- PHEV Electric
- RV & FC Scooter
More than 50% of energy is wasted due to traffic

LNG or CNG?

Volumetric Ratio:
LNG = 1.7 DGE
CNG = 3.8 DGE

Diesel | LNG | CNG

15 Gal. | 26 Gal. | 58 Gal.
Class-8 Truck Powertrain System Configuration

LNG/CNG Hybrid Electric

Fuel Cell Electric

LNG/CNG Plug-in Hybrid Electric

Peterbuilt LNG Truck
- Model 384 with ISL-G engine
- Wheelbase was 189”
- Suspension, spring front and air rear.
- Stock weight is 13,360lbs.

Enabling Near Zero Goods Movement
Double Power, Torque and Fuel Economy, 80% less NOx
LNG/CNG Hybrid Electric Powertrains

- Electric Regen Braking
- Electric only operation during que and traffic
- Idle control (Engine off operation)
- Manages low duty engine operation

Specs of Electric Motor and Engine

Electric Motor
- 1700 N.m @ 1500 RPM
- 350 hp

ISL-G 320 Engine (8.9 Liters)
- 1365 N.m @ 1300 RPM
- 240 kW
Double Power and Torque

Modeling and Simulation
Conventional versus EV and HEV

Speed and Acceleration
Torque and Power

Total Torque

- Conventional
- EV
- HEV

Total Power

- Conventional
- EV
- HEV

Drive Cycle 1: Port 710-110

Composite of Drayage and Highway
Battery Energy and SOC

Simulation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PHEV Loaded</th>
<th>PHEV Unloaded</th>
<th>Conventional Loaded</th>
<th>Conventional Unloaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque T_{max} (N.m)</td>
<td>2856</td>
<td>1517</td>
<td>1354</td>
<td>1304</td>
</tr>
<tr>
<td>Power P_{max} (kW)</td>
<td>478</td>
<td>303</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>Power P_{ave} (kW)</td>
<td>140</td>
<td>79</td>
<td>144</td>
<td>96</td>
</tr>
<tr>
<td>EV Range (miles)</td>
<td>19.5</td>
<td>39.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MPG (Diesel Equivalent)</td>
<td>5.0</td>
<td>9.2</td>
<td>4.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Fuel Efficiency Increase</td>
<td>+22%</td>
<td>+35%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Considering the idling time, the fuel economy is doubled
Drive Cycle 2: Drayage Port-Ware Houses

Battery SOC

Charge Depleting
EV Mode

Charge Sustaining
HEV Mode
Simulation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PHEV</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loaded</td>
<td>Unloaded</td>
</tr>
<tr>
<td>Torque T_{max} (N.m)</td>
<td>3012</td>
<td>3003</td>
</tr>
<tr>
<td>Power P_{max} (kW)</td>
<td>478</td>
<td>474</td>
</tr>
<tr>
<td>Power P_{ave} (kW)</td>
<td>74</td>
<td>33</td>
</tr>
<tr>
<td>EV Range (miles)</td>
<td>22.7</td>
<td>58.6</td>
</tr>
<tr>
<td>MPG (Diesel Equivalent)</td>
<td>5.8</td>
<td>13.0</td>
</tr>
<tr>
<td>Fuel Efficiency Increase</td>
<td>+23%</td>
<td>+26%</td>
</tr>
</tbody>
</table>

Considering the idling time, the fuel economy is doubled.

Hybrid Electric LNG/CNG Class 8 truck

Commercially viable Near Zero Goods Movement

Hybrid Electric ISL-G at the same cost as ISX-15G with double the range/fuel economy

Peterbuilt LNG Truck
- Model 384 with ISL-G engine
- Wheelbase was 189"
- Suspension, spring front and air rear.
- Stock weight is 12,000 lbs.
LNG/CNG Hybrid Electric Powertrains

LNG/CNG Hybrid Electric Vehicle
LNG/CNG Hybrid Electric Specification

Plug-in Hybrid Electric Drayage Truck “PHET”

Fuel Cell Electric Heavy duty Powertrain

Zero & Near Zero Emission Road map
Charge Fueling Time and Convenience

Limitation of Battery Electric MD/HD Trucks

Conclusions

- Plug-in Hybrid Electric with 30 miles Battery range (dual battery)
- Hybrid Electric with 5 miles, 30 minutes Port queuing battery operation (single battery)

Hybrid NG Electric, Commercially feasible, Commercial Delivery: Q2-2017, taking orders now

- Take up more space
- Refueling takes considerably longer

+ Safety advantage in the case of a leak
+ Lower cost to produce and store
+ Double the range (miles) with Hybrid
+ No need to fuel twice a day → saves time
Thank you!

Abas Goodarzi, Ph.D., P.E.
President
abas@ushybrid.com

Farzad Ahmadkhanlou, Ph.D., P.E.
farzad@ushybrid.com

www.ushybrid.com
www.usfuelcell.com