CNG Infrastructure Cost Webinar

September 16, 2014

- Overview of CNG Stations Mark Smith, U.S. Department of Energy and John Gonzales, National Renewable Energy Laboratory
- Small Station Example Jeremy Talbot, Phoenix Energy
- Medium Station Example Graham Barker, ANGI Energy Systems
- Question and Answer Session

Photo from Margaret Smith, DOE

Overview of CNG Stations

- Key Components
- Types of Stations
- Factors that Affect the Station Cost
- Station and Equipment Costs
- Operational Costs

Photo from Jeremy Talbot, Phoenix Energy Corp

Photo from Trillium CNG

Clean Cities / 3

Equipment	Purpose	Cost Range
Compressor	Compress gas from the inlet gas pressure to the pressure necessary for filling a vehicle to 3,600 psi	\$5K-\$500K
Dispenser	Quickly transfers CNG to the vehicle tank at a fast-fill station	\$25K-\$60K
Dual hose time-fill post	Fuels vehicles at a time-fill station	\$4K-\$7K
Storage tank	Stores compressed gas	\$70K-\$130K
Card reader	Allow the driver to access fuel using a fleet card or credit card	\$10K-\$30K
Gas dryer	Removes moisture from the gas prior to compression	\$10K-\$150K

- Fast-Fill similar fill times to a gasoline station
- Time Fill vehicles may take several minutes to many hours to fill
- Combination Fill has the ability to both fast fill and time-fill vehicles

Photo from Kaye Evans, PR Newswire

Photo from Greater Long Island Clean Cities

Clean Cities / 5

Fast Fill Systems – Provide immediate dispensing of CNG to vehicles ranging from passenger cars and fleet trucks to transit buses

Image from ANGI Energy Systems

Time Fill Systems – Are a cost effective fueling option that allow vehicles to conveniently refuel overnight or when the vehicles are parked and not in use.

Image from ANGI Energy Systems

Combination Systems – Feature both a fast fill and time fill system allowing high utilization of the compression capacity both day and night

- Public Stations open access to fleets and retail consumers
- Private Stations only available for use by fleet or with a contract
- Public/Private Stations fueling available to the private fleet as well as a publicly available fast-fill dispenser

Photo from Margaret Smith, DOE

Photo from Tulsa Gas Technologies

- Every station is different and costs vary substantially
- Station design and location are necessary for a cost estimate
- We'll provide a general overview of some cost factors

Photo from Robert Gordon, DeKalb County

Costs are Affected by User Needs and Access

- Vehicle quantity
- Vehicle drive cycle and duty cycle
- Fuel usage
- Fueling window
- Private, Public, Public/Private

Photo from Kaye Evans, PR Newswire

Photo from Warren Gretz, NREL

Photo from Margaret Smith, DOE

Photo from United Parcel Service

Costs are Affected by Site Constraints and Installation

Cities

- Inlet gas pressure
- Site layout
- Available power supply
- Space constraints
- Site proximity to gas pipeline

Photo from Tulsa Gas Technologies

Photo from Marathon Technical Services

Costs are Affected by Station Design

- Compressor redundancy
- Designing for future growth
- Backup generator

Photo from Marathon Technical Services

Photo from Marathon Technical Services

Photo from Marathon Technical Services

Clean Cities / 13

Costs are Affected by Regulatory and Permitting Needs

- Engage the authority having jurisdiction early and often
- Americans with Disabilities Act

Keep in Mind Operational Costs

- Operational costs included in fuel cost
- Billing and accounting systems
- Maintenance
- Liability insurance

Photo from Marathon Technical Services

Cities

Photo from Greater Long Island Clean Cities

City of Meriden, CT Department of Public Works CNG Station

- ARRA funded through Greater New Haven Clean Cities
- End users provided construction services to keep costs low
- Used refurbished components
- Duplex 20 SCFM compressors
- Dispenses ~170 gge/month for 6 sedans and 1 cargo van
- Estimated total installed cost is \$350K-\$400K

Town of Glastonbury, CT Municipal CNG Station

- ARRA funded through Greater New Haven Clean Cities
- End users provided construction services to keep costs low
- Single 20 SCFM compressor
- Dispenses ~680 gge/month for 3 shuttles, 2 trucks, and 15 sedans
- Estimated total installed cost is \$450K-\$550K

Costs Associated with CNG Vehicle Fueling Infrastructure Report http://www.afdc.energy.gov/uploads/publication/cng_infrastructure_costs.pdf

- Ballpark station cost ranges provided for very specific situations
- Costs include
 - Engineering
 - Equipment
 - Installation
- Assumes no installation complications, permitting issues, or compressor redundancy
- Stations with similar fuel throughputs but different designs or sites may have quite different costs

Example Station	Assumptions	Cost Range
1 personal vehicle fueling 5 gge/night inside a residential garage	 One 1-scfm (0.5 gge/hr) compressor 1⁄4-2 psi inlet gas pressure 	\$5,500- \$6,500
Private fleet station serving 2 passenger sedans/pickups fueling 5 gge/night outdoors	 One 2-scfm (1 gge/hr) compressor ¼-2psi inlet gas pressure One dual-hose post 	\$9K-\$10K

Example Station	Assumptions	Cost Range
Fast-fill private fleet station serving up to 4 sedans/pickups fueling 10 gge/day	 One 8-scfm (4 gge/hr) compressor 5 psi inlet gas pressure 3,780 scf storage (30 gge) One single-hose dispenser 	\$45K-\$75K
 Time-fill private fleet station serving 2 utility service trucks fueling 20 gge/night or 4 delivery vehicles fueling 10 gge/night 	 One 8-scfm (4 gge/hr) compressor 5 psi inlet gas pressure Two dual-hose posts 	\$35K-50K

Example Station	Assumptions	Cost Range
 Fast-fill private station serving 15-25 pickups/delivery vans fueling 7 gge/day or 9-16 taxis/work trucks fueling 12 gge/day 	 One 40-75 scfm (19-24 gge/hr) compressor 5-15 psi inlet gas pressure 16,250 scf storage (129 gge) One single-hose metered dispenser 	\$450K-\$600K
 Time-fill private station serving 10-20 school buses fueling 10 gge/night, 5-10 refuse vehicles fueling 20 gge/night, or 15-20 city sedans fueling 7 gge/night 	 One 20-50 scfm (10-24 gge/hr) compressor 5-10 psi inlet gas pressure Ten dual-hose posts One time-fill panel; 10-hour fueling window 	\$250K-\$500K

Included installation costs are estimated @ 65% of equipment costs

Clean Cities / 21

Medium Station (500-800 gge/day)

Example Station		Assumptions	Cost Range
 F SC G(G(SC 12 	ast-fill public retail station erving 50-80 light/medium- uty vehicles fueling 10 ge/day or fast-fill private fleet station erving 45-65 taxis fueling 2 gge/day	 One 180-300 scfm (86-143 gge/hr) compressor 30 psi inlet gas pressure 34,000 scf storage (270 gge) One dual-hose metered dispenser 	\$750K-\$900K
 Time-fill private station serving: 50-80 school buses fueling 10 gge/night, 25-40 refuse trucks fueling 20 gge/night, or 75-80 city sedans/pick-ups fueling 7 gge/night 		 One 100-175 scfm (48-83 gge/hr) compressor 30 psi inlet gas pressure Ten to forty dual-hose posts One time-fill panel; 10-hour fueling window 	\$550K-\$850K

Included installation costs are estimated @ 65% of equipment costs

Clean Cities / 22

Example Station		Assumptions		Cost Range
•	Fast-fill large retail station serving light- to heavy-duty vehicles such as delivery vans, work trucks, refuse trucks, class 8 tractors, and local fleets or Airport station serving light- and medium-duty vehicles such as taxis, shuttle buses, and local fleets	•	Two 300-400 scfm (143- 190 gge/hr) compressors 30 psi inlet gas pressure 55,000 scf storage (437 gge) Two dual-hose metered dispensers	\$1.2M-\$1.5M

Included installation costs are estimated @ 65% of equipment costs

Presented by: Jeremy Talbot

Introducing: Phoenix Energy Corp, LLC on Compressed Natural Gas (CNG)

Phoenix Energy Corp, LLC

Phoenix Energy Corp

Phoenix Energy Corp, LLC

Phoenix Energy Corp, LLC Company Profile

President: Ken Hyde

Vice President: Matt Hyde

CNG Conversion, Refueling Equipment & Installation

With over 60 years of combined experience, the team at Phoenix Energy is uniquely equipped to offer you the latest and most comprehensive alternative fuel solutions. We are a leader in the alternative fuels industry in Alabama and the surrounding states—applying our years of hands-on fleet management into practice at every level, from customer service to training new generations of technicians.

PHOENIX ENERGY is a Registered Contractor For the Federal Government, Such as ARMY, NAVY, AIR FORCE, MARINE CORP or any federal entity.

Phoenix Energy Corp, LLC Technician Certifications

-ASE Certified

-CSA Certified

-Swagelok Certified

-IMPCO Automotive Certified

-Landi Renzo Certified

-FuelMaker Certified

-Ingersoll Rand Certified

-Bauer Certified

-ASPRO Certified

-ANGI Certified

Planning For A CNG Station

NY WASHARD WARNER WARNER WARNER STONE ST

Phoenix Energy Corp, LLC

CNG Fill Station Considerations

- Station Size and Design Considerations
 - Number of vehicles per day
 - Fueling pattern of vehicles
 - Maximum daily flow
 - Maximum hourly flow
 - Available back-up fueling, redundancy?
 - Metering/Data/Payment needs
 - Amount of space available
 - Funding available

CNG Fill Station Considerations

- Land purchase or lease cost
 - Location, size of property, available utility services
- Site development, permitting and construction cost
 - Existing fuel site remediation, traffic/ improvements/changes, local codes & regulations, fencing, lighting, setbacks, labor availability/cost.
- Fueling equipment
 - Compression: Hp and sizing, required peak flow rates, inlet gas volumes/psi, electric drive or gas engine drive, amount of storage space available, controls
 - Gas dryers: projected volume and flow rates, inlet gas pressure and moisture content, manual vs automated regeneration
 - Storage: is it needed, if so what is balance between compression capacity and storage needs, peak reqs, cascade vs buffer, type of storage containers, space
 - Dispensers: number and type, flow rates, traffic flow,
 - Fuel metering/data capture, payment: is it needed, CCs/pmt cards, training reqs such as video (e.g. in CA)?

CNG Fill Station Cost Estimates

- Home Refueling (1 -2 Vehicles)
 - \$6,000 \$9,000
- Small Fleet (3 5 Vehicles)
 - \$30,000 \$40,000 (NO STORAGE)
 - \$45,000 \$60,000 (WITH STORAGE)
- Medium Fleet (5 10 Vehicles)
 - \$80,000 \$100,000 (NO STORAGE)
 - \$110,000 \$160,000 (WITH STORAGE)

Cost Vary Based On Number Of Vehicles, Site Work, Engineering, and Code Requirements.

NY WASHARD WARNER WARNER WARNER STONE ST

Phoenix Energy Corp, LLC

Phill Home Refueling Unit (1 Vehicle)

-3600 P.S.I. Slow Fill Unit

-Can Be Installed Indoors

-Single Phase 240V Power

-Only 3 P.S.I. Of Inlet Pressure Required

-Produces 1/2 G.G.E. / Hr.

-Automatically Stops When The Vehicle Is Full

FMQ-2 Refueling Unit (2 Vehicles)

-3600 P.S.I. Slow Fill Unit

-Single Phase 240V Power

-Only 5 P.S.I. Of Inlet Pressure Required

-Produces 1 G.G.E. / Hr.

-Fill Up To 2 Vehicles At The Same Time

-Automatically Stops When The Vehicle Is Full

FMQ-8 Refueling Unit (3-4 Vehicles)

-3600 P.S.I. Slow Fill Unit But Can Be Utilized In A Fast Fill Refueling Station

-Single Phase 240V Power

-Only 5 P.S.I. Of Inlet Pressure Required

-Produces 4 G.G.E. / Hr.

-Fill Multiple Vehicles At The Same Time

-Automatically Stops When The Vehicle Is Full

-Ideal For Small Fleets

For More Info, Visit Us On The Web at www.Phoenixenergycorp.net

Thank You For Your Time Today!

Medium & Large CNG Station Examples

Presented at:

DOE CNG Infrastructure Webinar

September 16th, 2014

Presented by:

Graham Barker Eastern Regional Sales Manager

Corporate Background and History

- 1983 Incorporated as Automotive Natural Gas Inc. (ANGI)
 - Over 30 Years in the Natural Gas Vehicle Business
- 1991 1st to package Ariel compressors for CNG
- 1997 Purchased by Grimmer Industries, Franklin, IN. Name changed to ANGI International
- 2002 ANGI Moves to New Factory in Milton, Wisconsin
- 2008 Name changed to ANGI Energy Systems
- 2009 Opened branch Office in Shanghai, China
- 2012 ANGI Expands again to a New Facility in North America – more than 4 times previous capacity
- 2014 Became a wholly owned subsidiary of Gilbarco Veeder-Root

Compression Experience

Summary of compression application experience by ANGI Energy Systems

	HYDROCARBON GAS COMPRESSION PACKAGES	
Typical Brake Horsepower	50 - 400 Bhp	
Experience Range	10 - 800 Bhp	
Discharge Pressure Range	Up to 5000 psig	
Typical Packages	Engine & Electric Drive, Single & Duplex, Portable & Stationary Skids up to 65,000 lbs	
Markets Served	Airports, Bio Gas, Convenience/Retail Stores, Delivery Fleets, Gas Producers/Distributors, Government Agencies, Owner/Operators, Refuse, Transit and Research & Development	

Note: Data 2002 - 2012

Case Study PA School Bus Fleet Medium Size Station

Fleet Information

- 74 School District Owned School Buses in the Philadelphia Area, Typically Operating 180 Days Per Year With Some Reduced Usage In Summer Months
- Fleet Increasing In Age; 35 Buses To Be Replaced Over Next 3 Years So Decision Made To Replace With CNG Buses:
 - Year 1 Replace 14 Buses: ± 26,000 DGE/Year
 - Year 2 Convert 11 Buses: ± 25,000 DGE/Year
 - Year 3 Replace 10 Buses: ± 19,000 DGE/Year
- Base Fuel Load 70,000 DGE/Year (± 390 DGE/Day)
- Expansion Design to 105,000 DGE/Year (± 585 DGE/Day)

Project Information

- The School District Obtained Grants From The State of PA Which Helped Pay the Incremental Costs for Both New CNG Buses and The Conversion of Existing Diesel Buses to CNG.
- Eastern PA Alliance for Clean Transportation (EP-ACT) Formerly Called Greater Philadelphia Clean Cities – Assisted the District With Their Grant Applications.
- The CNG Station Construction Cost Was Rolled Into An Existing Energy Management Contract Provided To the School District by Johnson Controls.

Station Design - 1

- Fast Fill Design; Redundancy Required; Maximum 8 Hours Compressor Operation Assumed; 30 PSIG Gas Line Pressure Available; Dispenser To Tie Into Existing Diesel Fuel Management System.
- Using 135 SCF as 1 DGE Equivalent, Minimum Compressor Sizing Is Determined as Follows:
 - Base Design: 390 DGE x 135 SCF ÷ 8 Hours ÷ 60 Minutes = 110 SCFM
 - Expansion: 585 DGE x 135 SCF ÷ 8 Hours ÷ 60 Minutes = 165 SCFM
- Based On The Above, Two (2) 75 SCFM @ 13 PSIG Inlet, 50 HP Compressors Were Selected for The Base Design, With Expansion Capability To Add A Third Compressor When Necessary

Station Design - 2

- Major Station Components As Follows, In Order of Gas Flow:
 - One (1) Single Tower Inlet Gas Dryer With Onboard Manual Regeneration Sized for Three (3) Compressors
 - Two (2) 75 SCFM Compressors With Duplex Motor Starter Assembly
 - One (1) ½" Construction (Fleet Size) Priority Panel
 - One (1) Three Pack ASME Assembly ± 35,000 SCF @ 4500 PSIG
 - One (1) Dual Hose Dispenser
- Major Station Design Requirements:
 - Compact Footprint
 - Low Noise Impact
 - Ease Of Maintenance
 - Aesthetically Pleasing
 - Utilize Existing Fleet Fuel Management System for Reporting

Station Construction Process

- This Project Had Some Unique Qualities And Requirements, as follows:
 - An Ongoing Contentious Relationship Between the School District And Local Residents, Which Added Time To The Process
 - The Need For Station Construction To Be Completed During The School Summer Shutdown, Which Required Extra Planning
 - Prevailing Wages Which Increase Construction Costs and Complicate Administration Process

Project Details

Project Timeline:

- May 2013: RFP Issued
- July 2013: AGT/Oxford Engineering Selected For Design Build
- August 2013: Conceptual Drawings Produced
- August November: Attend Two (2) Public Meetings To Provide Information To Residents
- August November: Attend Three (3) Open Planning Board Meetings To Respond To Questions/Comments From Residents
- November 2013: Permits Obtained, Equipment Ordered and Construction Drawings Commenced
- June 2014: Construction Commenced Once School Closed
- August 2014: Station Operational For New School Year
- Project Cost:
 - Approximately \$800,000.00

Site Conditions Pre Construction - 1

Site Conditions Pre Construction - 2

ENERGY SYSTEMS

ANGlenergy.com • 800.955.4626

ENERGY SYSTEMS

ANGlenergy.com • 800.955.4626

Examples of Larger CNG Fueling Stations And Transit Stations

Retail Refueling Stations

- Kwik Trip Retail Locations
- 25+ Locations with 10 more in process
- Installed 2012 present
- Up to 1500 SCFM (12 GGE/min) each station

Fleet & Public Fueling Station

- Time Fill of 120 Class 8 Tractors daily
- 10-15 DGE/min Fill Capability on multiple Fast fill hoses
- Installed 2013
- 4700 SCFM (34 DGE/min) Compression

Transit Refueling Stations

- Central Ohio Transit Authority (COTA) Columbus, Ohio
- Designed for 100+ Buses
- Installed 2013
- 4000 SCFM (29 DGE/min) Electric Drive Compression

THANK YOU

gbarker@angienergy.com 203 394 7889

www.angienergy.com 305 W. Delavan Drive Janesville, Wisconsin USA 53546 800 955 4626 email: sales@angienergy.com Questions

Mark Smith, DOE mark.smith@ee.doe.gov (202) 287-5151 John Gonzales, NREL john.gonzales@nrel.gov (303) 275-4393

Jeremy Talbot, Phoenix Energy jeremytalbot@phoenixenergycorp.net (205) 453-0241

Graham Barker, ANGI Energy Systems gbarker@angienergy.com (203) 394-7889