Non-Residential Electric Vehicle Supply Equipment Costs

Margaret Smith, New West Technologies
February 17, 2015
Costs Associated with Electric Vehicle Supply Equipment

- EVSE Overview
- EVSE Cost Overview
- EVSE Unit Cost Factors
- Installation Cost Factors
- Operation and Maintenance Costs
- Incentives
- Tips for Minimizing EVSE Costs
- Example Scenarios

Main Information Sources:
- EV Project (2011-2013)

EVSE consists of all the equipment needed to deliver electrical energy from an electricity source to a plug-in electric vehicle battery.

<table>
<thead>
<tr>
<th>Charging Level</th>
<th>Vehicle Range Added per Charging Time and Power</th>
<th>Supply Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Level 1</td>
<td>4 mi/hour @ 1.4kW</td>
<td>120VAC/20A (12-16A continuous)</td>
</tr>
<tr>
<td></td>
<td>6 mi/hour @ 1.9kW</td>
<td></td>
</tr>
<tr>
<td>AC Level 2</td>
<td>10 mi/hour @ 3.4kW</td>
<td>208/240VAC/20-100A (16-80A continuous)</td>
</tr>
<tr>
<td></td>
<td>20 mi/hour @ 6.6kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 mi/hour @ 19.2 kW</td>
<td></td>
</tr>
<tr>
<td>DC Fast Charging</td>
<td>24 mi/20minutes @24kW</td>
<td>208/480VAC 3-phase (input current proportional to output power; ~20-400A AC)</td>
</tr>
<tr>
<td></td>
<td>50 mi/20minutes @50kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 mi/20minutes @90kW</td>
<td></td>
</tr>
</tbody>
</table>
Non-residential EVSE increases the electric driving range for PEV owners and enables drivers without access to home charging to own PEVs.
EVSE Cost Overview

✓ EVSE Unit Hardware
✓ Installation Costs
 - Contractor labor and materials for
 • Connecting EVSE to the electrical service
 • New electrical service or upgrades (if needed)
 • Meeting Americans with Disabilities Act (ADA) requirements
 • Misc. (traffic protection, signage, lighting)
 - Permitting and inspection
 - Engineering review and drawings
✓ Operation and Maintenance Cost
 - Electricity consumption and demand charges
 - EVSE network subscription
 - Management time
 - Billing transaction costs
 - Maintenance and repairs

Incentives
State or local EVSE incentives such as rebates, tax credits/exemptions, grants, or loans may be available to reduce costs.
EVSE Unit Cost Factors

EVSE unit cost primarily depends on the
1. Charging Level and Amperage Rating
2. # of Charging Ports
3. Mounting system (wall/pedestal)
4. Networked/Non-networked
5. Additional Features

<table>
<thead>
<tr>
<th>EVSE Type</th>
<th>EVSE Unit* Cost Range (single port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>$300-$1,800</td>
</tr>
<tr>
<td>Level 2</td>
<td>$400-$6,500</td>
</tr>
<tr>
<td>DCFC</td>
<td>$10,000-$40,000</td>
</tr>
</tbody>
</table>

*EVSE unit costs are based on units commercially available in 2015.

Additional Features
- Communications Capabilities
- Access Control
- Point of Sale (POS)
- Energy Monitoring
- Energy Management and Demand Response
- Advanced Display Screen
- Retractable Cord
- Automated Diagnostics
Level 1 EVSE Unit (single port) $300-$1,800

Main L1 EVSE Cost Factors

- Mounting
 - Cordset that can plug into a 120V outlet (low cost)
 - Wall mounted unit
 - Pedestal unit (higher cost)
- Advanced Features
EVSE Unit Costs - Level 2

Level 2 EVSE Unit (single port)
$400-$6,500

Main L2 EVSE Cost Factors
• Mounting (wall/pedestal)
• Communications capabilities
• Advanced features

Ballpark Cost Ranges for Level 2 EVSE

FLEET
Basic Wall Mount
$500-$1,000

Basic Pedestal
$1,200-$1,700

Pedestal with Low Level Data Collection
$1,700-$2,700

WORKPLACE

PUBLIC
Pedestal with Advanced Features
$3,000-$6,000

Image from New West Technologies
Main DCFC EVSE Cost Factors

- Power output ranges from 24-250kW (commonly 50-60kW)
- Number of ports (may have multiple connector standards but only charge one vehicle at a time)
- Advanced features

DCFC Connectors
SAEJ1772 CCS and CHAdeMO

Photo from Don Karner

Photo from Margaret Smith
EVSE installation costs vary significantly based on site specific factors. **A site evaluation is critical** for estimating EVSE installation costs.
Installation Costs – Connecting EVSE to Electrical Service

Simple/lower cost – run conduit along the wall a short distance from the electrical service to the EVSE

Complex/higher cost – trench or bore through concrete to run conduit a long distance from electrical service to EVSE

Trenching cost varies by location but in some areas the cost for digging the trench, laying conduit, then back-filling is:

- $10-$20/ft for soil
- $100-$150/ft for asphalt or concrete
For some sites, **boring** (drilling a tunnel underneath the ground) is cost effective alternative to trenching.

- less invasive
- does not disrupt traffic flow
- fewer costs for disposing of removed concrete and restoring surface to original appearance

These EV Project EVSE were installed by boring under existing sidewalk to maintain landscaping.
Installation Costs – New Electrical Service or Upgrades

3 Fundamental EVSE Electrical Needs
1. Sufficient electrical capacity from the utility connection to the electrical panel.
2. Sufficient electrical capacity at the panel.
3. A dedicated circuit for each EVSE unit on the electrical panel (in most cases).

Consult with electrician and utility to determine if electrical work is needed and estimate cost.

- **Service upgrade** – Increasing the electrical capacity from the utility to an existing electrical panel, e.g. new transformer. $10,000-$25,000 (WCEH).
- **New electrical service** – Bringing electricity from the utility to a site that did not previously have electricity. $3,500-$9,500 (EV Project)
- **Electrical panel work** – Replacing or upgrading the panel, re-working the panel to provide more breaker positions, or adding a sub-panel. Cost is very site specific. *About 72% of Level 2 commercial installations required panel work (EPRI)*
Installation Costs – Additional Cost Factors

• Permits and inspection - $14-$821 (EV Project)
• Engineering review and drawings -$1,000-$3,000 (EV Project)
• Americans with Disabilities Act (ADA) requirements can have a minimal or significant effect on costs, depending on the site and authority having jurisdiction (AHJ)
 – Level parking spaces
 – Accessible signage
 – Van accessible parking spaces
 – Curb cutouts
 – Specific connector height
• Traffic protection
 – Bollard $200-$800 (interviews)
 – Wheel stop $100-$200 (interviews)
Installation Costs – Level 1

Level 1 Installation

$0-$3,000

Main L1 Installation Cost Factors

• Offer an existing electrical outlet for drivers to plug in cordset ($0)
• Install an electrical outlet or a wall mounted Level 1 EVSE ($300-$1,000)
• Install a pedestal Level 1 EVSE ($1,000-$3,000 assuming no major electrical work needed)
Installation Costs – Level 2

Level 2 Installation

$600-$12,700

Main L2 Installation Cost Factors

- Pedestal/wall mount
- Trenching/boring
- Electrical work (panel, new/upgraded service)
- Geographic location
- Fleet, workplace, or public

Source: 2013 EPRI Report
Installation Costs – Level 2 Public by Geographic Region

Costs vary by geographic region
- Labor rates
- Permitting fees
- ADA requirements
- % of wall mounted units
- Higher costs for high visibility location

Source: INL/EV Project
Installation Costs – Level 2 Public and Workplace (EV Project)

- All non-residential L2 installation cost ~$3,000 avg
- Workplace installation averages are lower than public for all, pedestal, and wall mount installations

Avg. Install. Cost EV Project L2 Non-Residential

<table>
<thead>
<tr>
<th></th>
<th>All Non-Res.</th>
<th>Publicly Accessible</th>
<th>Workplace</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>$2,979</td>
<td>$3,108</td>
<td>$2,223</td>
</tr>
<tr>
<td>Pedestal Units</td>
<td>$3,209</td>
<td>$3,308</td>
<td>$2,305</td>
</tr>
<tr>
<td>Wall Mount Units</td>
<td>$2,035</td>
<td>$2,042</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

Source: INL/EV Project
Installation Costs – DC Fast Charging

DCFC Installation
$4K-$51K

Main DCFC Installation Cost Factors
• New or upgraded electrical service
• Trenching/boring
• Foundation design

Costs from DCFC Projects
• EV Project installation of 100 DCFC ($8.5K-$51K, avg. $21K/each)
• West Coast Electric Highway installation of 56 DCFC (avg. $40K/each)
• Orlando Utilities Commission installation of 5 DCFC ($4K-$9K)
Operation and Maintenance (O&M) Costs – Electricity

Electricity Consumption
- Commercial electricity rates: $0.08-$0.15 per kWh
- Annual cost varies by power usage

Demand Charges
- Once site’s power usage crosses the utilities threshold (20-50kW), demand charges may apply
- DCFC or multiple Level 2 EVSE may result in demand charges
- $0-$2,000+ per month
- Energy management systems can be used to avoid demand charges

Talk to your utility!
- Ask your local utility if they offer special PEV charging rates or time-of-use rates
- Find out if EVSE will affect your demand charges and how they can be minimized

<table>
<thead>
<tr>
<th>Single Port EVSE Scenarios</th>
<th>Electricity Consumption and Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td></td>
</tr>
<tr>
<td>Workplace charging</td>
<td></td>
</tr>
<tr>
<td>1 light-duty vehicle; Charging</td>
<td>2,184 kWh/yr</td>
</tr>
<tr>
<td>6hrs/day; 5 days/wk</td>
<td>$218/yr</td>
</tr>
<tr>
<td>Fleet charging</td>
<td></td>
</tr>
<tr>
<td>1 light-duty vehicle; Charging</td>
<td>5,096 kWh/yr</td>
</tr>
<tr>
<td>14hrs/night; 5 days/wk</td>
<td>$510/yr</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
</tr>
<tr>
<td>Workplace charging</td>
<td></td>
</tr>
<tr>
<td>2 light-duty vehicles; Each</td>
<td>10,296 kWh/yr</td>
</tr>
<tr>
<td>charging 3hrs/day; 5 days/wk</td>
<td>$1,030/yr</td>
</tr>
<tr>
<td>Public charging</td>
<td></td>
</tr>
<tr>
<td>1 light-duty vehicle; Charging</td>
<td>6,864 kWh/yr</td>
</tr>
<tr>
<td>5hrs/day; 4 days/wk</td>
<td>$686/yr</td>
</tr>
<tr>
<td>Fleet charging</td>
<td></td>
</tr>
<tr>
<td>2 medium-duty vehicles; Each</td>
<td>17,160 kWh/yr</td>
</tr>
<tr>
<td>charging 5hrs/night; 5 days/wk</td>
<td>$1,716/yr</td>
</tr>
<tr>
<td>DCFC</td>
<td></td>
</tr>
<tr>
<td>Public charging</td>
<td></td>
</tr>
<tr>
<td>2 light-duty vehicles; Each</td>
<td>11,278 kWh/yr</td>
</tr>
<tr>
<td>charging 20 min/day; 7 days/wk</td>
<td>$1,128/yr</td>
</tr>
</tbody>
</table>
O&M Costs – Network Fees

• Networked EVSE
 – EVSE can be networked or non-networked
 – Networked EVSE are connected to the Internet
 – Charging networks provide added value
 • Charging station visibility and availability for drivers
 • Energy monitoring
 • Station usage analysis
 • Access control
 • Payment system
 • Customer support
 – Some of these features may also be available without a charging network such as access control and payment systems. Aftermarket energy monitoring devices can track net power consumption.

• Charging Network Fees
 – $100-$900 annually
 – Cellular/Wi-Fi network communications
 – Back office support
O&M Costs – Maintenance and Repair

• Little information is available on EVSE lifespan, maintenance costs, and repair costs.
• Repair or replacement of EVSE components may be needed due to malfunction or vandalism.
• Basic Level 1 and Level 2 EVSE
 – Regular maintenance is generally not required for basic L1 and L2 EVSE.
 – If the L1 electrical outlet needs to be replaced, the cost of labor and materials may be around $50-$120
• Advanced Features/Communications
 – EVSE with advanced features or communications systems have more components that could malfunction.
 – Networked units may have additional costs for technician troubleshooting or manual resets for software malfunctions
• DCFC require ongoing maintenance due to cooling systems, filters, and other components not on L1 or L2 EVSE.
EVSE Incentives Can Reduce Cost

<table>
<thead>
<tr>
<th>Incentive Example</th>
<th>Incentive Description</th>
<th>Base EVSE Unit Cost</th>
<th>EVSE Unit Cost after Incentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Tax Credit</td>
<td>Income tax credit for 20% of the cost of the EVSE, up to $2,500.</td>
<td>$4,000</td>
<td>$3,200</td>
</tr>
<tr>
<td>Level 2 Rebate</td>
<td>$1,000 rebate for the purchase and installation of Level 2 EVSE</td>
<td>$3,000</td>
<td>$2,000</td>
</tr>
<tr>
<td>DCFC Rebate</td>
<td>$15,000 rebate for the purchase of DCFC</td>
<td>$30,000</td>
<td>$15,000</td>
</tr>
</tbody>
</table>

For current incentives, visit AFDC Laws and Incentives Database http://www.afdc.energy.gov/laws

New Federal EVSE Tax Credit
Up to $1,000 for residential EVSE or $30,000 for a commercial/public EVSE installed January 2015-Dec 2016
Tips for Minimizing EVSE Costs – EVSE Unit Selection

EVSE Unit Selection
- Minimum level of features needed
- Wall mounted EVSE unit (if possible)
- Dual port EVSE minimizes installation costs per charge port.
- Choose the quantity and level of EVSE units to fit within that available electrical capacity

Long Term Planning

Location
Tips for Minimizing EVSE Costs – Location

EVSE Unit Selection

Location
- Minimize the trenching/boring distance.
- Place the EVSE unit close to the electrical service.
- Use signage to direct PEV drivers to the EVSE unit.
- Choose a location that already has space on the electrical panel with a dedicated circuit.

Long Term Planning
Tips for Minimizing EVSE Costs – Long Term Planning

EVSE Unit Selection

Location

Long Term Planning
- Discuss electrical service needs and charges with your utility
- Avoid demand charges
- Upgrade your electrical service for your anticipated long term EVSE load and run conduit to your anticipated future EVSE locations.
- Consider the electricity infrastructure for EVSE when building a new facility
EVSE Unit and Installation Cost Summary

Ballpark EVSE Unit and Installation Costs

<table>
<thead>
<tr>
<th>EVSE Type</th>
<th>EVSE Unit* Cost Range (single port)</th>
<th>Average Installation Cost (per unit)</th>
<th>Installation Cost Range (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>$300-$1,800</td>
<td>not available</td>
<td>$0-$3,000**</td>
</tr>
<tr>
<td>Level 2</td>
<td>$400-$6,500</td>
<td>$3,000 EV Project</td>
<td>$600-$12,700 EV Project</td>
</tr>
<tr>
<td>DCFC</td>
<td>$10,000-$40,000</td>
<td>$21,000 EV Project</td>
<td>$4,000-$51,000 EV Project and Orlando Utilities Commission</td>
</tr>
</tbody>
</table>

*EVSE unit costs are based on units commercially available in 2015.

**The $0 installation cost assumes the site host is offering an outlet for PEV users to plug in their Level 1 EVSE cordsets and that the outlet already has a dedicated circuit.
Additional Resources

1. Costs Associated with Non-Residential EVSE:

3. Clean Cities’ Plug-In Electric Vehicle Handbook for:
 - Workplace Charging Hosts:
 - Public Charging Station Hosts: http://www.afdc.energy.gov/pdfs/51227.pdf

4. INL Lessons Learned papers from the EV Project: http://avt.inl.gov/evproject.shtml

5. Electric Vehicle Supply Equipment Installed Cost Analysis study by EPRI:
 http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002000577

 - ADA Guidance: http://energy.gov/eere/vehicles/ada-requirements-workplace-charging-installation

7. Siting and Design Guidelines for EVSE:
Questions

Jim Francfort
Idaho National Laboratory
james.francfort@inl.gov
208-526-6787

Charlie Botsford
AeroVironment
botsford@avinc.com
626-357-9983 x351

Randy Schimka
San Diego Gas &Electric
rschimka@semprautilities.com
858-636-3922

Margaret Smith
New West Technologies
msmith@nwttech.com
202-656-4373
Additional Slides
Scenario A: Low Cost – Site host installs 5 outlets in parking garage for employees to plug in their own Level 1 cordsets.

Scenario B: Middle Cost – Site host installs 2 wall mounted Level 1 EVSE.

Scenario C: High Cost – Site host installs 5 pedestal Level 1 EVSE in parking lot. EVSE is located close to the electrical service and the electrical panel doesn’t need significant work.
Level 2 Example Scenarios

Level 2: Unit ($400-$6,500) / Installation ($600-$12,700)

Scenario A: Low Cost – Site host installs 2 wall-mounted L2 EVSE in a location close to the electrical panel. There is sufficient electrical capacity and 2 dedicated circuits already available.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSE Units ($700 ea.)</td>
<td>$1,400</td>
</tr>
<tr>
<td>Installation ($1,500 ea.)</td>
<td>$3,000</td>
</tr>
<tr>
<td>Total</td>
<td>$4,400</td>
</tr>
<tr>
<td>Cost/EVSE</td>
<td>$2,200</td>
</tr>
</tbody>
</table>

Scenario B: Middle Cost – Site host installs 3 basic pedestal mounted L2 EVSE. Some electrical work is required to create the dedicated breakers. The EVSE is placed close to the electrical service and only needs 10’ of trenching through concrete.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSE Units ($1,500 ea.)</td>
<td>$4,500</td>
</tr>
<tr>
<td>Installation ($3,500 ea.)</td>
<td>$10,500</td>
</tr>
<tr>
<td>Total</td>
<td>$15,000</td>
</tr>
<tr>
<td>Cost/EVSE</td>
<td>$5,000</td>
</tr>
</tbody>
</table>

Scenario C: High Cost – Site host installs 2 pedestal L2 EVSE with advanced features in a high visibility location far from the electrical service requiring 75’ of trenching.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSE Units ($3,000 ea.)</td>
<td>$6,000</td>
</tr>
<tr>
<td>Installation ($6,000 ea.)</td>
<td>$12,000</td>
</tr>
<tr>
<td>Total</td>
<td>$18,000</td>
</tr>
<tr>
<td>Cost/EVSE</td>
<td>$9,000</td>
</tr>
</tbody>
</table>
DCFC Example Scenarios

DCFC: Unit ($10K-$40K) / Installation ($4K-$51K)

Scenario A: Low Cost – Site host installs a low power (25kW) DCFC at a site that has sufficient electrical capacity in a location that requires minimal trenching.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSE Unit</td>
<td>$10,000</td>
</tr>
<tr>
<td>Installation</td>
<td>$10,000</td>
</tr>
<tr>
<td>Total</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

Scenario B: Middle Cost – Site host installs a DCFC (50kW) at a site that required new electrical service. There is a $9,000 cost for extending new electrical service.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSE Unit</td>
<td>$14,000</td>
</tr>
<tr>
<td>Installation</td>
<td>$20,000</td>
</tr>
<tr>
<td>Total</td>
<td>$34,000</td>
</tr>
</tbody>
</table>

Scenario C: High Cost – Site host installs a DCFC (50kW) at a site that does not have sufficient electrical capacity. There is a $20,000 cost to upgrade the electrical service. Significant concrete trenching is also required.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSE Unit</td>
<td>$17,000</td>
</tr>
<tr>
<td>Installation</td>
<td>$40,000</td>
</tr>
<tr>
<td>Total</td>
<td>$57,000</td>
</tr>
</tbody>
</table>