

Direct-Injection CNG

Combustion Research in a Heavy-Duty Optical Engine

Mark P. B. Musculus Sandia National Laboratories, USA

Natural Gas Vehicle Technology Forum (NGVTF) 2015 Meeting Fort Mason Center – San Francisco, CA

"Back to the Future Day" – October 21, 2015

Sponsor: USDOE Office of FreedomCAR and Vehicle Technologies Program Managers: Gurpreet Singh, Leo Breton, Kevin Stork

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

1985-2015: Heavy-duty diesel emissions decreased over 50-fold, efficiency up by 8(13) percentage pts.

- Because of its overall fuel-lean charge (λ>1.4 or φ<0.7), a conventional diesel engine cannot use the 3-way catalyst for exhaust aftertreatement that has worked well for stoichiometric gasoline (& CNG) engines since 1981
 - Needed to find in-cylinder solutions as emissions targets were tightened through 2004, then add aftertreatment in 2007/2010 (PM filter + Urea SCR)
- Some emissions reduction technologies also brought fuel efficiency improvements
 - DOE SuperTruck 2015 goal/demonstration: 50+% BTE; was <38% in 1985

In-cylinder strategies to improve diesel emissions & efficiency were guided by optical diagnostics

Sandia National Laboratories

NG studies would need different optical tools. Example: Low-temperature diesel combustion

The standia National Laboratories

Improvements are needed at many steps in US NG supply/use chain – Sandia/CRF focus is combustion

- Key NG R&D areas:
 - Distribution/refueling
 - GTL/LNG production
- On-board storage
- Vehicle end-use: combustion
- <u>NG optical research is dwarfed by diesel studies:</u>
 - "Optical" + "diesel" SAE papers, 1947-2015: <u>795</u>
 - "Optical" + "natural gas" SAE papers, 1992-2015: <u>45</u>
- Four NG engine combustion strategies in production:
 - "Best" combustion strategy depends on economics/regulations/performance
 - Each faces unique in-cylinder challenges

Common-platform optical engine capable of 4+ operating strategies to provide missing in-cylinder NG combustion science-base

Four production NG combustion strategies today; balance of economics, regulation, & performance

gnition Spark/Prechamber

Stoichiometric Spark Ignition

- Port/DI, premixed, cooled EGR
- 3-way catalyst
- ~36% efficiency
- 100% NG
- Cummins, Scania, Waukesha, IVECO

Lean Premixed **Diesel Pilot**

 Port/DI, premixed or stratified. cEGR Ignition

Diesel-P

- Oxy-catalyst •
- ~45% efficiency
- 0-95% NG
- Volvo (Hardstaff, G-Volution retro.)

NG

Lean Premixed **Spark Ignition**

- · Port/DI, premixed or stratified, EGR
- Oxy-catalyst
- ~43% efficiency
- 100% NG
- Cummins, MAN, Doosan, GE

DI stratified/jets

- NG+diesel, EGR Catalyzed DPF,
- Urea SCR
- ~46% efficiency
- ~90% NG
- Westport, Volvo

Each NG strategies faces unique combustion challenges

Stoichiometric spark-ignition challenges include efficiency, fuel variability, and knock/load limits

In-cylinder gaps for NG stoichiometric/EGR spark ignition

- Controlling flame kernel/growth/knock transition¹
 - Surface/geometry effects
 - Fuel composition effects
 - EGR/fuel mixing/distribution effects¹
- Using turbulence to increase flame speed with EGR
 - Effects on ignition, misfiring issues¹

¹MTZ Worldwide 75(10):1-15, Figer, Seitz, Graf, Schreier (2014)

²IMechE S1807, Cornwall, Foster, Noble (2014)

Stoichiometric spark-ignition challenges include efficiency, fuel variability, and knock/load limits

Previous optical work³:

- Previous optical work³:
 With LPG, intake port valve can place EGR in bottom of cylinder
 More stratified EGR burns faster and with higher efficiency
 ¹MTZ Worldwide 75(10):1-15, Figer, Seitz, Graf, Schreier (2014)

Graf, Schreier (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2004-01-0928, Woo et al. (2004)

Intake	Premixed NG, Stoichiometric	Methane-specific 3-way catalyst for CO, HC, NOx ²
	Cooled EGR	Reduces NOx & heat load, raises knock limit ^{1,2}
Fuel Efficiency	~36% ¹	Throttle, Timing Retard, EGR + low compression ratio to avoid knock ¹
NG Fraction	100% ^{1,2}	No diesel fall-back ²
Key HD Dev.	Cummins, Scania	a, Waukesha, IVECO ²

FGR #1

(more stratified) (less stratified)

EGR #4

Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 8/18 COMBUSTION RESEARCH FACILITY

Representation Sandia National Laboratories

Stoichiometric spark-ignition challenges include efficiency, fuel variability, and knock/load limits

Intake	Premixed NG, Stoichiometric	Methane-specific 3-way catalyst for CO, HC, NOx ²
	Cooled EGR	Reduces NOx & heat load, raises knock limit ^{1,2}
Fuel Efficiency	~36% ¹	Throttle, Timing Retard, EGR + low compression ratio to avoid knock ¹
NG Fraction	100% ^{1,2}	No diesel fall-back ²
Key HD Dev.	Cummins, Scania, Waukesha, IVECO ²	

Schlieren images of knocking combustion³

Understand factors that control NG knock with EGR

- Kernel/flame growth
- Surfaces/geometry
- Fuel composition (inc. H₂)
- EGR distribution

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³Proc. Comb. Inst. 20, Smith et al. (1984) ⁴www.sandia.gov/ecn/tutorials/visualization.php Prior to autoignition of end-gas

Intake	Lean-premixed NG $(\lambda \sim 1.6-1.8)^1$	Aftertreatment for HC and CO, possibly NOx
Efficiency	~43% ¹	high specific heat ratio, high compression ratio ^{1,2}
Heavy-Duty	Cummins, Scania, MAN, GE (Jenbacher) ²	
Challenges	Ignition stability (pre-chamber), transients, SCR for US2010/Euro VI NOx, CH ₄ slip (low exhaust T / catalyst-efficiency) ^{1,2}	

Pre-chamber simulation³

Acetone PLIF: fuel consumption³

a) b) c) d)

Previous optical work³:

- PLIF shows pre-chamber stratification, comp. inflow
 - Variability lowers knock limit
- Pre-chamber-jet mixing increases flame speed

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2014-01-1330, Wellander et al.

Previous optical work³:

 Turbulent jet ignition (TJI) pre-chamber allows leaner operation with higher stability & combustion efficiency

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2012-01-0823, Attard et al.

Intake	Lean-premixed NG $(\lambda \sim 1.6-1.8)^1$	Aftertreatment for HC and CO, possibly NOx
Efficiency	~43% ¹	high specific heat ratio, high compression ratio ^{1,2}
Heavy-Duty	Cummins, Scania, MAN, GE (Jenbacher) ²	
Challenges	Ignition stability (pre-chamber), transients, SCR for US2010/Euro VI NOx, CH_4 slip (low exhaust T / catalyst-efficiency) ^{1,2}	

Natural Luminosity imaging³

COMBUSTION RESEARCH FACILITY Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 11/18

Intake	Lean-premixed NG $(\lambda \sim 1.6-1.8)^1$	Aftertreatment for HC and CO, possibly NOx
Efficiency	~43% ¹	high specific heat ratio, high compression ratio ^{1,2}
Heavy-Duty	Cummins, Scania	a, MAN, GE (Jenbacher) ²
Challenges	Ignition stability (pre-chamber), transients, SCR for US2010/Euro VI NOx, CH ₄ slip (low exhaust T / catalyst-efficiency) ^{1,2}	

Schlieren spark-ignited jet³ Schlieren jet-capillary spark plug⁴

Previous optical work^{3,4}:

 Spark-ignited jets improve combustion speed/stability at overall lean conditions

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2015-01-0398, Bartolucci et al. ⁴SAE 2007-01-1913, Chan et al.

COMBUSTION RESEARCH FACILITY Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 12/18

Understand fuel-lean flame ignition/propagation issues

- Flow/piston interactions³
- Lean spark/pre-chamber ignition kernel growth⁴
- Incomplete combustion⁴

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³DOE Annual Merit Review, Miles (2006) ⁴Ph.D Thesis, U. of Wisconsin, Kokjohn (2012)

Intake	Lean-premixed NG $(\lambda \sim 1.6-1.8)^1$	Aftertreatment for HC and CO, possibly NOx
Efficiency	~43% ¹	high specific heat ratio, high compression ratio ^{1,2}
Heavy-Duty	Cummins, Scania, MAN, GE (Jenbacher) ²	
Challenges	Ignition stability (pre-chamber), transients, SCR for US2010/Euro VI NOx, CH_4 slip (low exhaust T / catalyst-efficiency) ^{1,2}	

Lean premixed diesel-pilot ignition challenges include combustion efficiency, aftertreatment cost

Previous optical work4:

- OH Chemiluminescence shows bowl-wall ignition, incomplete combustion at center for low φ
- Fuel-tracer PLIF: fuel-lean at center, akin to diesel LTC PCCI

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2013-01-2812, Boretti et al. ⁴SAE 2014-01-1313, Dronniou et al.

Intake	lean-premixed NG + EGR	aftertreatment for HC and CO, usually NOx
Efficiency	~45% ³	high specific heat ratio, high compression ratio ^{1,2}
NG fraction	0-95% ^{1,2,3}	can run 100% diesel ^{1,2}
Heavy-Duty	Volvo; retrofit: CAP, Hardstaff, G-Volution ²	
Challenges	combustion efficiency (CO, CH_4), CH_4 catalysts, NOx aftertreatment costs ^{1,2}	

OH Chemiluminescence⁴

Fuel-tracer PLIF⁴

COMBUSTION RESEARCH FACILITY Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 14/18

Lean premixed diesel-pilot ignition challenges include combustion efficiency, aftertreatment cost

Intake	lean-premixed NG + EGR	aftertreatment for HC and CO, usually NOx
Efficiency	~45% ³	high specific heat ratio, high compression ratio ^{1,2}
NG fraction	0-95% ^{1,2,3}	can run 100% diesel ^{1,2}
Heavy-Duty	Volvo; retrofit: C	AP, Hardstaff, G-Volution ²
Challenges	combustion effic catalysts, NOx a	iency (CO, CH ₄), CH ₄

CO Fluorescence Images⁴

Understand fuel-lean NG w/ diesel-pilot ignition issues

- Source of CO (lean/rich)⁴
- Incomplete combustion⁵
 - CH₄/Intermediates⁵

• Source of NO (pilot comb.) ¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2013-01-2812, Boretti et al. ⁴DOE Annual Merit Review Presentation, Miles, (2010) ⁵Ph.D Thesis, U. of Wisconsin, Kokjohn (2012)

COMBUSTION RESEARCH FACILITY Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 15/18

High-pressure direct injection challenges include diesel aftertreatment cost, injection interactions

Previous o	ptical work ⁴ :

- PLIF shows pressure ratio affects shock structures
- PR also affects spreading angle, shock-induced turbulence aids mixing

¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2013-01-2421, Stanton ⁴SAE 2014-01-1619, Yu et al.

Intake	air + EGR	DPF + Urea SCR (diesel)
Efficiency	~46% ^{1,3}	high specific heat ratio, high compression ratio ^{1,2}
NG fraction	~90% ²	can't run 100% diesel ²
Heavy-Duty	Volvo; retrofit: C	AP, Hardstaff, G-Volution ²
Challenges	Diesel-like emissions, optimize dual inj. ^{1,2}	

COMBUSTION RESEARCH FACILITY Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 16/18

The Sandia National Laboratories

High-pressure direct injection challenges include diesel aftertreatment cost, injection interactions

Understand high-pressure
direct-injection NG issues

- Flame lift-off with NG and diesel pilot ignition⁴
 - OH LIF/chemiluminesc.
 - Soot LII / PAH LIF
- Explore LTC/premixing⁵ ¹MTZ Worldwide 75, Figer et al. (2014) ²IMechE S1807, Cornwall et al., (2014) ³SAE 2013-01-2421, Stanton

⁴SAE 2001-01-1295, Dec & Tree

⁵SAE 2009-01-2699, Genzale et al.

COMBUSTION RESEARCH FACILITY Direct-Injection CNG Combustion Research in a Heavy-Duty Optical Engine 17/18

Sandia/CRF plan: convert HD optical diesel engine for NG – common platform, 4(+) comb. strategies

Three NG fuel delivery systems

- 1. Up to 10 bar intake-port injector
- 2. Up to 100 bar side-wall DI
- 3. Up to 600 bar Westport HPDIstyle combined NG + diesel

Three ignition systems

- 1. Conventional spark plug
- 2. Diesel pilot ignition
- 3. Pre-chamber/spark system

Fueled with scientific-grade NG

 Certified mix with H₂ and/or C₂-C₄ species; NG recovery system

Common-platform optical engine can provide the missing science base for multiple NG strategies in reciprocating HD engines

Representation of the second s