2015 Clean Cities Strategy

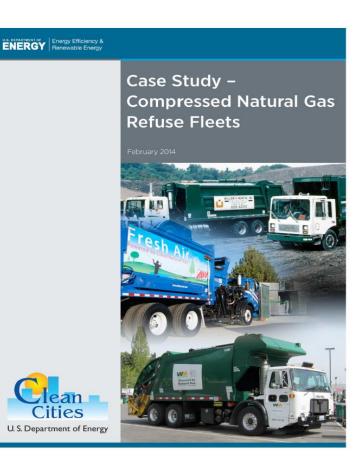
Natural Gas Vehicle Technology Market Trends

Andrew Burnham and Marianne Mintz

Argonne National Laboratory

February 25, 2015

Current Clean Cities Activities in NGVs

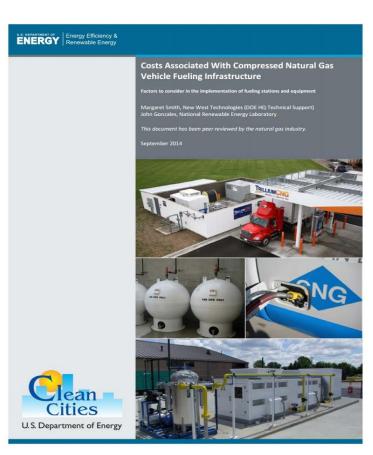


NGVs ~60% of Clean Cities AFV petroleum displacement

- Coordinator project development
- Recovery Act
- National Clean Fleets Partnership
- Communication products
 - AFDC
 - MotorWeek
 - Toolkits

Partnerships

- Natural Gas Vehicle Technology Forum
- NCFP



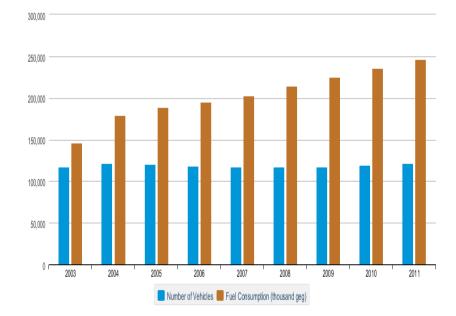
Current Clean Cities Activities in NGVs

Technical assistance

- Tiger Teams
- Technical reports
- Tools
 - AFDC Station Locator
 - AFLEET Tool
 - VICE Model
 - JOBS NG
 - PREP Tool

Current State of the Market for NGVs

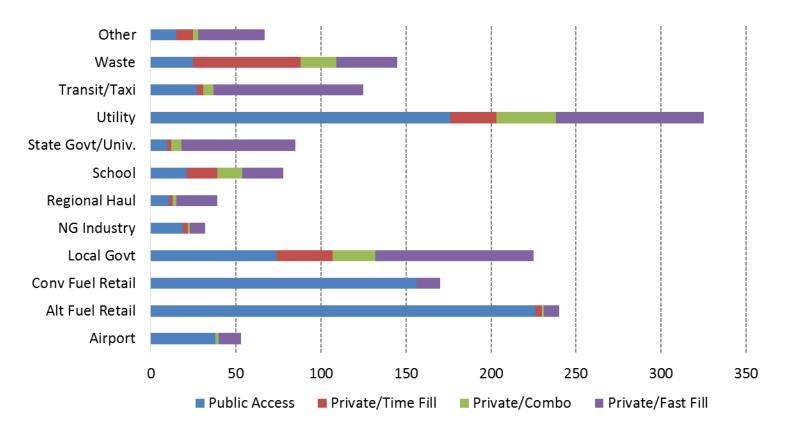
120-150K NGVs


- 66K LDVs using 22M GGE
- 23K MDVs using 20M GGE
- 32K HDVs using 205M GGE

Current niche markets

- Transit bus
 - 25% of new sales
- Refuse haulers
 - 50% of new sales

Navigant projects growth from today to 2024


- From 18K to 24K HDVs sold/yr
- From 29K to 49K pickups sold/yr

• 1,500 CNG & 100 LNG stations

- > 50% publicly accessible

Overview of Niche Market Findings

Market Niche	Payback (yr)	10% Mkt Oil (bbl/yr)	10% Mkt GHGs (tons/yr)
Regional Haul			
100 < x < 200			
mi/day range	3	11,700,000	863,000
x < 100			
mi/day range	3	6,300,000	465,000
Port Drayage	2	2,700,000	200,000
Concrete Mixers	4	1,200,000	55,000
Paratransit/Shuttles	5	700,000	49,000
School Bus	7	4,100,000	299,000
Utility Service	8	1,100,000	50,000
RNG Feedstock	Suggested Tech.	RNG Production Oil equiv (bbl/yr)	RNG GHGs (tons/yr)
Food Waste (10% Total)	Anaerobic	4,000,000	1,500,000
Landfill Gas (50% Potential)	digestion	6,500,000	2,500,000

Regional Haul

- Class 8 combination freight trucks
- Return-to-base
- Private or anchor fleet fast-fill fueling
- 9 & 12 L NG engine
- Fast paybacks

Vehicle type	Рор.	Annual VMT	Annual Fuel (gal)
Regional Haul			
100 < x < 200 mile			
daily range	410,000	49,000	8,900
x < 100 mile			
daily range	370,000	30,000	5,400
Port Drayage	80,000	54,000	10,700

Concrete Mixers

- Class 8 vocational trucks
- Return-to-base
- Time-fill fueling
- 9 & 12 L NG engine
- Fast paybacks

			Annual
		Annual	Fuel
Vehicle type	Pop.	VMT	(gal)
Concrete Mixers	80,000	16,000	5,000

Paratransit/Shuttles

- Class 3 MD vans to Class 7 shuttles
- Return-to-base
- Time- or fast-fill fueling
- SVM conversions and 9 L NG engine
 - Future 6.7 L
- FTA funding for paratransit

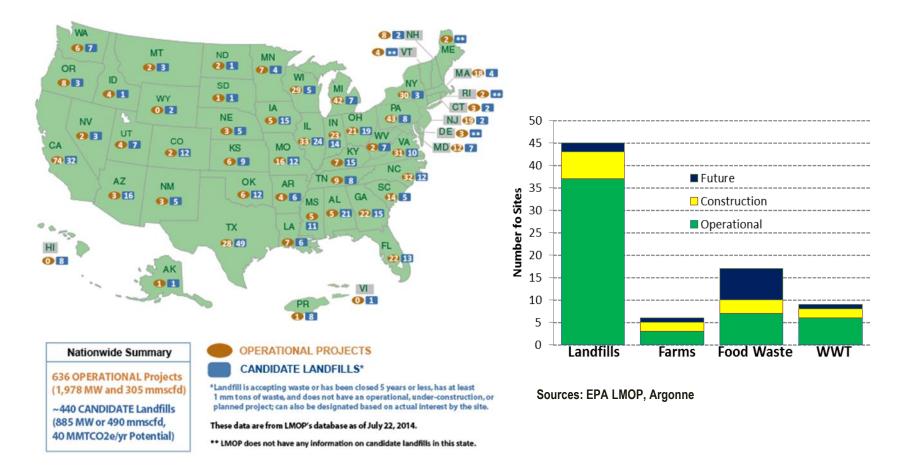
			Annual
		Annual	Fuel
Vehicle type	Pop.	VMT	(gal)
Paratransit	70,000	24,000	2,700

School Bus

- Class 4 Type A to Class 7 Type D
- Return-to-base
- Time- or fast-fill fueling
- SVM conversions and 9 L NG engine
 – Future 6.7 L
- Local incentives

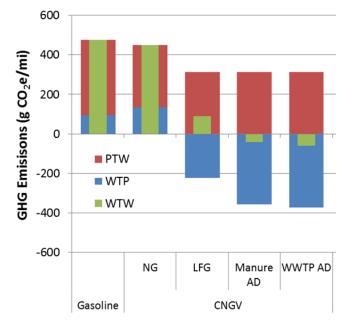
			Annual
		Annual	Fuel
Vehicle type	Pop.	VMT	(gal)

Utility Service

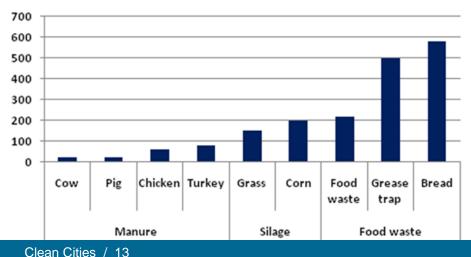

- Class 3 vans to Class 6 vocational trucks
- Return-to-base
- Fast-fill fueling
- SVM conversions and 9 L NG engine
 – Future 6.7 L
- Utility engagement

			Annual
		Annual	Fuel
Vehicle type	Pop.	VMT	(gal)
	- • • • •		

Potential Niche Market: RNG from LFG and Food Waste



- 37 of 636 landfills with WTE projects, produce RNG for pipeline injection or vehicle fuel
- Another 440 candidate landfills are capable of producing 490 mmscfd (540 gge/yr)
- 133 billion lbs (>30% US food supply) is uneaten each year
- Only a handful of WTE projects currently produce RNG utilizing some food waste, but interest is rising
- RNG can be produced from food waste alone or co-digested in stand alone anaerobic digesters or WWTPs


Clean Cities / 12

Potential Niche Markets: RNG from LFG and Food Waste

Biogas yield (m3)/tonne feedstock

DRIVERS

- Plentiful supply.
- Significant environmental benefits
 - 85-115% GHG reduction
 - Cellulosic biofuel under RFS
 - Qualifies under LCFS which is stackable
- Efficiency. Food wastes boost yield.

BARRIERS

- Cost.
- Complexity. Long lead times, multiple vendors, approvals and partners.
- Temporary and uncertain incentives.
- Financing.
- Utility interconnection costly & difficult (but may be changing).

Clean Cities Strategies Targeting Natural Gas Market Niches

• Toolkits

- Concrete mixers, airport shuttles, RNG, Coalition insights and case studies
- Tools/calculators (AFLEET, VICE, JOBS, PREP)
- Links to technical resources (AFDC, NGVA, ABC, NFPA)

Financing

- Innovative financing (C2ES)
 - Performance contracting
 - "Green" banks
- Grants (DOE, DOT, USDA, etc.)
- Third parties (e.g., RIN managers

Technical Assistance

- Webinars/reports on emerging NGV markets/issues (dual-fuel glider, corridors, HHP applications)
- Clean Cities University courses
- Tiger Team troubleshooting

Clean Cities Strategies Targeting Natural Gas Market Niches (cont'd)

Liaisons/Connections

- Reinforce existing collaborations
 - National Governor's Association (e.g., vehicle/fuel taxation and rate recovery, fuel sales, certification of conversion shops/technicians, vehicle inspection)
 - National Clean Fleets Partnership
- Build new collaborations
 - Airport administrators/air industry groups (especially for smaller airports)
 - MSW/resource recovery authorities and trade groups
 - Compost facility operators/advocates)

AFV Trials/Demos

- Local/regional partnerships
- Web-based support

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

This work has been supported and assisted by: Linda Bluestein: U.S. Department of Energy Dennis Smith: U.S. Department of Energy

> For additional information contact: Andrew Burnham: <u>aburnham@anl.gov</u> Marianne Mintz: <u>mmintz@anl.gov</u> Marcy Rood Werpy: <u>mroodwerpy@anl.gov</u>