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Executive Summary

Mission

Improve NG Engine and Vehicle Emissions and Efficiency — The objective is to
reach an efficiency level similar to that of conventionally fueled vehicles and
reduce emissions to near-zero levels with improvements to the natural gas

engine as part of a hybrid powertrain, capable of being commercially saleable
into a medium- or heavy-duty vehicle

Key program deliverables
— Medium Duty Natural Gas Hybrid Demonstration Vehicle

— 25% reduction in GHG compared to diesel baseline
— 0.02 g/bhp-hr NOy
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Engine Development
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Single Cylinder Engine Research

To determine if the requirements of the project could be met, a
single-cylinder research engine based on the Isuzu 4HK diesel
platform was configured with a bespoke high-tumble, pent-roof
cylinder head and converted to run on natural gas.

Key features included on SCE to support test program

Displacement (cc) 1300

— High Tumble Pent Roof Cylinder Head E— 115

Stroke (mm) 125

— Variable valve timing o —— 1221

— Fumigated injection and port injection MAT (C) 40
Oil temp (°C) 100

—_ Cooled EGR Coolant temp (°C) 100
Electric SC

Exhaust BP Manunzl, match to Intake
Valve Timing Control Intake & Exhaust VVT

Ignition System High-energy, single stnke

SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07
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SCE Test Results

The results indicated that the Gen 2 combustion system
would meet the vehicle demonstration requirements

The Gen 2 combustion system reduced the tumble levels
with increased valve sizes relative to the Gen | system

These improvements included:

* Reduction in pumping work of up to 0. bar PMEP
" Lower lumped efficiency losses

= Up to 10% higher EGR tolerance

Analysis results were also used to refine modeling efforts
for the multi cylinder engine program

SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07
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MCE Build & Test

= MCE build based on an Isuzu 4HK | short
block assembly

* Component updates based on SCE effort

— 12:1 compression ratio pistons with custom
designed connecting rods

— New high tumble pent roof, four valve
cylinder head

— Dual cam carrier assembly
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MCE - Fully Assembled Engine

SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07
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Catalyst System

= A BMW X7 xDrive 40i production catalyst was utilized
— Time and cost constraints precluded a custom catalyst for this demonstrator
— The BMW unit included close coupled (CCC) and an under-floor catalyst (UFC) blocks

" An additional custom UFC was utilized downstream of the BMW catalyst to obtain
capacity needed for this application

= Relatively inexpensive gasoline catalyst system

BMW Catalyst
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Steady State Calibration for Emissions

* The Woodward EGR module is designed to meet the
0.02 g/bhp-h NO, emissions targets by measuring the
airflow in the same location as the fuel is injected so 5
there is no lag in fueling

Throttle Nozzle pressure drop [kPa]

50

48
46
44
42
40
38
36
34
Nozzle model gg
28
26
24
22

— This mitigates deviations from stoichiometric during
transients

Speed Density |

s
i =N
|

* The pressure drop across either the throttle or

. . 124 &
nozzle is used to calculate air flow |

BMEP [bar]

10 B

" At high torque low speeds where the pressure drop
across the nozzle is too low for accurate estimation,
the model reverts to a speed density calculation

1 1 X I " I b I ! 1 4 | z 1

1000 1200 1400 1600 1800 2000 2200 2400 2600

» The nozzle size was selected to minimize the use of .
Engine speed [rpm]

the speed density model but also minimize the overall
pumping losses
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Transient Cycle Performance

3000 2000

* The engine was tested over the Diesel i ’(\ mx 1500
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Transient Control Strategies

6000

€ 25000 . I |

= The ECU was calibrated to use cold
start strategies including:

— High idle at 1200 rpm
— Phi offset of 0.005 rich
— Spark retard

* Equivalence ratio control during cycle
was held tight by the EGR module
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Transient Cycle Emissions Performance

* NO, was able to meet 0.02 g/bhp-h

= CO, meets targets out to 2027 including CH, trading SR nnm-n
= 34g of CO, for each gram of CH, above the in glbhp-h
I|m|t Composit

e tailpipe 0.018 1.133 0.022
= All pollutant emissions meet the current regulations

emissions
: US 2015 600
=  Ammonia and PM were not measured but are Standard L 15.5 W e |8
n
expected to meet regulations
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GEM Transient Cycles

Regulatory Subcategory MHD
Duty Cycle Regional Multi-Purpose Urban
= GEM uses three drive cycles Total weight (kg) i 1408
Acrodynamic Drag Area - CdA (m”) 5410
— ARB transient Payload (tons) 5.60
—  GEM cruise cycle at 55 mph and 65 mph with varying road grade Electrical Accessory Pawer (W) 200
4 P P ying g Mechanical Accessory Power (W) 1600
—  These three cycles add to a 100% weight that is the non-idle cycle weighting ARB Transient Drive Cycle Weighting 020 0.54 0.92
. . . . GEM 55 mph Dnve Cycle Weighting .24 0.29 0.08
—  There are 8 configurations of drive axle and rolling resistance GEM 65 mph Drive Cycle Weighting 036 017 0.00
—  Start stop reduces drive idle emissions by 90% Parked Idle Cycle Weighting 025 0.25 0.25
TIvE ¢ Cwyele Weightin . & N
Drive Idle Cycle Weighting 0.00 0.17 0.15
" Vocational has three subcategories Non-ldle Cycle Weighting 0.75 0.58 0.60
—  Regional is weighted for more cruise driving
—  Urban is weighted for transient driving
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GHG Reduction Prediction

* Used GEM inputs for the baseline, provided by Isuzu
* Used a combination of GEM and GT-Drive for the hybrid versions

" With just the preliminary level of hybrid controls the NG hybrid is close to achieving the 25% GHG
emissions reduction target

— The hybrid was only used to show an improvement on the transient cycle and idle cycle

* Hybrid controls used a charge sustain mode only

— Hybrid showed 5% improvement over HHDDT transient cycle
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Hybrid System
Development

SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07
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Drive Cycle Performance Modeling

® The Isuzu 4H-Fseries-VF76

: [ f
Class 6 medium-duty truck e & 6 &
was modeled in GT-DRIVE £ ] Y el 3
T T v P4 Motor $

&

* The same hybrid vehicle DEEr~E = DR iy <
g O -8-— [l L

: P
model captures P2 and P4 wew de e TR
A * ‘ | A
hybrid architectures using » | P4
R 5 B
clutch arrangements to select Ve « B L.
4 4 . A

either configuration

GT-DRIVE VEHICLE AND POWERTRAIN VKA MODEL
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Drive Cycle Performance PHEV Results

20

Full Payload HEV Vehicle Fuel Economy

18

= Best PHEV architecture; 1

P2 .
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=
n
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* PHEV Fuel economy improvements

Standard cycles: 24% to 48%
Isuzu-City cycle: 10%

308
Isuzu-Highway cycle: less than 1% 3 20% I I

15%

0%

PHEV Pack Capacity Effect on CO, Emissions Reduction - Full Payload

S08
45%

W Isuzu- City
40%
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35%

CO, Emissions Reduction[%)

#
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30k Wh
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Operating Modes

ICE can be clutched

Clutch always engaged . out during regen o ICE always clutched out ——

“Recharge”| ""%"9€ | utharge depletion” | “EV Mode”
. arge aepietion
. sustaining” - g P . Motor only
B ICE only
g_ ICE assist is Motor + ICE
v // enforced
kY PR & |
12 ,J’f
ﬁ {’,;f{f \.
> (f /g/ 0
.7 ICE started and
,’:” : on standby

SOC
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Hybrid Control Development

BRI

* Control strategies converted from GT-Drive to = = - -
. . . 'l L] - ?ﬂ..li -l
Simulink and refined . :Eflt! i
) . ¢ 1/p2 n.'lu:m . e | ke P4 Mator
. . . . . . A la D S
= Co-simulation of Simulink strategies with GT plant 88 & -8~ & = Qs 2

model \ —

" Benefits: - W 2.1
— More detailed control strategies in Simulink

— Allows auto-coding of Simulink strategies
straight to vehicle controller

— Faster implementation and iteration when
testing in vehicle

SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07
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SIL Co-sim Verification & Calibration

Starting at 50% SOC

Starting at 25% SOC

‘u'ehicle speed
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Vehicle Integration

SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07
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Task 5.2 —=Vehicle Integration

Status:

- Hybrid hardware integration complete

- NG Engine and fuel system integration complete
- Wiring complete

2 POWERTRAIN ENGINEERING
DSOUTHWEST RESEARCH INSTITUTE Swri'org 24




CNG / Hybrid Vehicle Integration

" |solated hybrid system shown below (PN:25912-900-000)
— PN:25912-950-100: Traction Motor Assembly
— PN:25912-950-200: Battery / Electrical
— PN:25912-950-300: CNG Fuel Tank

Electronics / Battery Coolers
Inverter

Disconnect Clutch CNG Tank

and Traction Motor

)| Motor Cooler
DC/DC Converters ~F

Charger

Battery Circulation Pumps

POWERTRAIN ENGINEERING
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Vehicle and Hybrid System Overview

* The traction motor, battery / electrical and CNG systems have
been integrated into the Isuzu F series vehicle chassis

Traction / Motor

CNG Fuel Tank

POWERTRAIN ENGINEERING
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Traction Motor Integration

= Primary components: Disconnect clutch assembly and housing

— Disconnect clutch assembly Inverter

* South Bend 1947-OFE manual transmission clutch and |
Schaeffler CAN controlled electrohydraulic actuator

* Custom flywheel housing extension
— Borg Warner HVYH410-075-DOM traction motor

— Custom bellhousing extension and flex-plate adapter

Bellhousing extension housing

Electric motor

POWERTRAIN ENGINEERING
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Battery / Electrical Integration

" Primary components:

A

Leclanche INT-39HYV Battery Pack
Cascadia PM250DZ Inverter

Sevcon Gen 5 HV DC-DC Converter
EDN EVOI IKL Charger

HV Power Distribution unit Inverter T :
HV Power N~ et ) 4 Charger
Distribution Unit - . <

DC/DC Converter

POWERTRAIN ENGINEERING
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CNG Fuel System and Englne

" Primary components:
Agility CNG fuel system
CNG Fueled Engine

Agility CNG fuel
system

IC Engine

. | | POWERTRAIN ENGINEERING
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SwRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07

Next Steps

Powertrain evaluation, vehicle demonstration and reporting tasks

" Vehicle performance testing

— Hybrid control and powertrain system calibration and testing on the SwRI
heavy-duty chassis dyno

" Drive cycle and On-road testing

— The truck will be operated on the SwRI chassis dyno and test track to
validate drive cycle emissions performance and on-road drivability

" Final project reporting and vehicle demonstration
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