EVI-Pro Lite Updates Webinar

Eric Wood | Lauren Spath Luhring | Matt Rahill
December 9, 2020
Presenters

Eric Wood
Senior Engineer
eric.wood@nrel.gov

Lauren Spath Luhring
Project Leader/Software Engineer
lauren.spathluhring@nrel.gov

Matt Rahill
Website Project Leader
matt.rahill@nrel.gov
Agenda

1. AFDC Introduction
2. EVI-Pro Model & Load Profile Scenarios
3. Demo of the Tool and API
4. Local Opportunities
5. Q&A
Alternative Fuels Data Center

Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane

The premier information resource for alternative fuels and advanced vehicles

afdc.energy.gov
Who uses the AFDC?

- Fleet managers: 3 million users annually
- Transportation planners: 12 million pageviews annually
- Fuel providers: 25 million station searches annually
- Utilities
- Clean Cities coalitions
EVI-Pro Lite

Charging Need

Load Profile

afdc.energy.gov/evi-pro-lite
EVI-Pro Model & Load Profile Scenarios
The EV Infrastructure Projection Tool

Simulation model to:
• Estimate charging demand from EVs
• Design supply of infrastructure

Informed by real-world data and integrated with models of vehicle adoption, mobility, station economics, and the grid

Originally developed through collaboration with the California Energy Commission and since applied at the city-, state-, and national-level
Bottom Up EVI-Pro Driving / Charging Simulations

Travel Data

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Miles</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:45 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>10:30 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>3:00 PM</td>
<td>100</td>
<td>Public</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td>40</td>
<td>Home</td>
</tr>
</tbody>
</table>
Travel Data

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Miles</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:45 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>10:30 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>3:00 PM</td>
<td>100</td>
<td>Public</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td>40</td>
<td>Home</td>
</tr>
</tbody>
</table>

Sample Vehicle / Infra Assumptions:
- 250 mile BEV
- DCFC = 50kW
- L2 = 7.2kW

Sample Choice / Access Assumptions:
- Charge every night, home dominant
Travel Data

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Miles</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:45 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>10:30 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>3:00 PM</td>
<td>100</td>
<td>Public</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td>40</td>
<td>Home</td>
</tr>
</tbody>
</table>

Sample Vehicle / Infra Assumptions:
- 250 mile BEV
- DCFC = 50kW
- L2 = 7.2kW

Sample Choice / Access Assumptions:
- Charge every night, home dominant
- Plug-in only if needed, even at home

Driving, Charging Simulations
Bottom Up EVI-Pro Driving / Charging Simulations

Travel Data

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Miles</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:45 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>10:30 AM</td>
<td>30</td>
<td>Public</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>3:00 PM</td>
<td>100</td>
<td>Public</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td>40</td>
<td>Home</td>
</tr>
</tbody>
</table>

Sample Vehicle / Infra Assumptions:
- 250 mile BEV
- DCFC = 50kW
- L2 = 7.2kW

Sample Choice / Access Assumptions:
- Charge every night, home dominant
- Plug-in only if needed, even at home
- No home-charging, reliant on public infrastructure

Driving, Charging Simulations
Bottom Up EVI-Pro Driving / Charging Simulations

Travel Data

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Miles</th>
<th>Destination</th>
<th>Driver A</th>
<th>Driver B</th>
<th>Driver C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:45 AM</td>
<td>30</td>
<td>Public</td>
<td>None</td>
<td>None</td>
<td>Public DCFC</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>10:30 AM</td>
<td>30</td>
<td>Public</td>
<td>None</td>
<td>Public L2</td>
<td>None</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>3:00 PM</td>
<td>100</td>
<td>Public</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td>40</td>
<td>Home</td>
<td>Home L2</td>
<td>Home L2</td>
<td>None</td>
</tr>
</tbody>
</table>

Sample Vehicle / Infra Assumptions:
- 250 mile BEV
- DCFC = 50kW
- L2 = 7.2kW

Sample Choice / Access Assumptions:
- Charge every night, home dominant
- Plug-in only if needed, even at home
- No home-charging, reliant on public infrastructure

Driving, Charging Simulations

- **Charging demand to satisfy travel**

Discovered, Simulated Charge Events

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Driver A</th>
<th>Driver B</th>
<th>Driver C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:45 AM</td>
<td>None</td>
<td>None</td>
<td>Public DCFC</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>10:30 AM</td>
<td>None</td>
<td>Public L2</td>
<td>None</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>3:00 PM</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td>Home L2</td>
<td>Home L2</td>
<td>None</td>
</tr>
</tbody>
</table>

Diagram

- Vehicle SOC over Hour of Day
- Public DCFC, Home L2, Public L2

Online PEV Infrastructure Tool: EVI-Pro Lite

Objective: Make analytic capabilities of EVI-Pro model accessible to broad group of stakeholders for EVSE investment decisions.

Approach: Develop a simplified, web-based interface for EVI-Pro that gives users access to a limited number of critical input variables.

Significance & Impact
- EVI-Pro “unlocks” an unlimited number of scenarios for planners to explore regarding EV charging infrastructure requirements.
- Ability to rapidly develop scenarios and explore sensitivities will help users understand the key drivers for investment.

[afdc.energy.gov/evi-pro-lite]
EVI-Pro Lite: Providing complex modeling to a broad audience

EVI-Pro Lite simplifies demand modeling, enabling partners to create tailored scenarios for state or city charging infrastructure.

Building Partnerships

What are partners doing with the EVI-Pro Lite?

- FHWA has highlighted the tool during state convenings on nominating electric alternative fuel corridors
- Hawaiian Electric Company built a case for infrastructure investment for the public utilities commission
- Broward County, Florida directs consultants to use the tool for electric vehicle infrastructure strategies
- Tesla uses the tool in discussions with cities around public infrastructure investments
- NYSERDA planned infrastructure investment and has developed an ongoing partnership with NREL

Measuring Success

Since its launch, 10,000 users have viewed 24,000 pages on the tool, spending almost 3.5 minutes per visit.
EVI-Pro Lite: Providing complex modeling to a broad audience

EVI-Pro Lite simplifies demand modeling, enabling partners to create tailored scenarios for state or city charging infrastructure.

“Municipal and regional governments typically do not have the resources to understand their charging infrastructure needs. Having a quick online tool that gives a ballpark estimate of charging needs is a deeply helpful service. I’ve witnessed first-hand the amazement when city level sustainability staff first use EVI-Pro Lite.”

-DOE 2019 Annual Merit Reviewer
NREL Electrification Futures Study scenarios project great degree of transportation electrification, in line with several energy system transformation scenarios.

EFS High scenario, 2050

- Transportation share of electricity use increases from 0.2% in 2018 to 23% of electricity consumption in 2050.
- 1,424 TWh increase in transportation-related electricity consumption relative to the 2050 Reference scenario.

Source: https://www.nrel.gov/analysis/electrification-futures.html
“Are EVs going to break the grid?”
Broad use of EVI-Pro for grid impacts analysis...
“Unlock” EVI-Pro Load Profiles

With support from...
The US Department of Energy

In collaboration with...
Lawrence Berkeley National Laboratory
Schatz Energy Research Center at Humboldt State University

With feedback from...
Electric utilities
Automotive manufacturers
Charging network companies
Local governments
Research institutes

Expose users to projections in:
A Simplified Interface for Accessibility
A Programmatic Interface for Analysts
“Unlock” EVI-Pro Load Profiles

Emphasize significance of...

Vehicle Technology

Simulated load from 300,000 EVs in Massachusetts
“Unlock” EVI-Pro Load Profiles

Home-Dominant Charging

No Home Charging

Simulated load from 120,000 EVs in Atlanta, GA
“Unlock” EVI-Pro Load Profiles

Emphasize significance of… Charging Behavior

Home-Dominant Charging

Free Workplace Charging

Simulated load from 4,000 EVs in Denver, CO
“Unlock” EVI-Pro Load Profiles

Emphasize significance of...

Load Flexibility

Charge as soon as possible

Simulated load from 2M EVs in Los Angeles

Charge as late as possible
Preview scenarios

Example Load Scenarios (from NREL API)

Grid load with varying charger location preferences

- heavy_home
- light_home
- heavy_work
- light_work

15-min steps; midnight at 0 and 96; noon at 48

Exhaustive list of API input parameters

- Fleet size (3)
 - 1,000, 10,000, 50,000
- Average Fleet DVMT (3)
 - 25, 35, 45
- Temperature (7)
 - -20, -10, 0, 10, 20, 30, 40
- PEV Distribution (3) (Numbers correlate to % of vehicle type: PHEV20, PHEV50, BEV100, BEV250)
 - BEV Dominant = 10/15/25/50
 - PHEV Dominant = 25/50/10/15
 - PHEV/BEV Equal Shares = 15/35/15/35
- Vehicle Class (3)
 - Sedan dominant = 80/20
 - Equal distribution = 50/50
 - SUV dominant = 20/80
- Day of Week (2): weekday, weekend
- Home Access and Power (9)
 - 100% have access to home power (reflects region with high fraction of single family homes). Three additional options for home power
 - Most L1 (80% L1, 20% L2)
 - Most L2 (20% L1, 80% L2)
 - Even L2 (50% L1, 50% L2)
 - 75% have access to home power. Three additional options for home power
 - Most L1 (80% L1, 20% L2)
 - Most L2 (20% L1, 80% L2)
 - Even L2 (50% L1, 50% L2)
 - 50% have access to home power. Three additional options for home power
 - Most L1 (80% L1, 20% L2)
 - Most L2 (20% L1, 80% L2)
 - Even L2 (50% L1, 50% L2)
- Work Power (3):
 - Most L2 (20% L1, 80% L2)
 - Even L2 (50% L1, 50% L2)
 - Most L1 (80% L1, 20% L2)
- Home/Work Preference (3):
 - 100% prefer home
 - 80% prefer home
 - 60% prefer home
Demo of the Tool and API

- afdc.energy.gov/evi-pro-lite/load-profile
- developer.nrel.gov/docs/transportation/evi-pro-lite-v1
EVI-Pro Lite – Load Profile

https://afdc.energy.gov/evi-pro-lite/load-profile

https://developer.nrel.gov/docs/transportation/evi-pro-lite-v1/
Initial form

- Users select state and city/urban area on initial screen
- May choose a larger fleet size, but max fleet size is restricted to 100% of current light duty fleet
Results page

- Results show user inputs plus other default values
- All values may be edited
- Question mark icon on results page indicates more information is available
• Tooltips add context and clarification
• Load profile charts are greyed out and Recalculate button appears any time changes are made to inputs

• Load profile shapes adjust once the Recalculate button is clicked
Multiple scenarios allowed

- Users can add or remove up to 5 comparison scenarios
- Pre-defined “Best” and “Worst” case scenarios cannot be edited, show minimum and maximum peak scenarios
Multiple scenarios

• When multiple scenarios are selected, charts change to a single line per scenario
• Hovering over chart shows time of day
Chart and input downloads

• Two downloads available:
 – Chart images (PNG, JPEG, PDF, or SVG)
 – Scenario inputs (CSV)
Load Flexibility

• Default scenario for EVI-Pro Lite is “minimum delay” – charging begins at full power/speed as soon as a user arrives at home or work and lasts until the vehicle is fully charged or unplugged
• Inputs to represent load flexibility demonstrate potential shifts in charging loads
• Tooltip defines charging strategies
API and Methodology

• Assumptions and Methodology content provided from page footer (https://afdc.energy.gov/evi-pro-lite/load-profile/assumptions)

• API documentation for underlying APIs also linked from page footer (https://developer.nrel.gov/docs/transportation/evi-pro-lite-v1/)
Local Opportunities

cleancities.energy.gov